skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Discovery of Gibellula floridensis from Infected Spiders and Analysis of the Surrounding Fungal Entomopathogen Community
Characterization of fungal spider pathogens lags far behind their insect counterparts. In addition, little to nothing is known concerning the ecological reservoir and/or fungal entomopathogen community surrounding infection sites. Five infected spider cadavers were identified in the neo-tropical climate of north-central Florida, USA, from three of which viable cultures were obtained. Multi-locus molecular phylogenetic and morphological characterization identified one isolate as a new Gibellula species, here named, Gibellula floridensis, and the other isolates highly similar to Parengyodontium album. The fungal entomopathogen community surrounding infected spiders was sampled at different habitats/trophic levels, including soil, leaf litter, leaf, and twig, and analyzed using ITS amplicon sequencing. These data revealed broad but differential distribution of insect-pathogenic fungi between habitats and variation between sites, with members of genera belonging to Metarhizium and Metacordyceps from Clavicipitaceae, Purpureocillium and Polycephalomyces from Ophiocordyceps, and Akanthomyces and Simplicillium from Cordycipitaceae predominating. However, no sequences corresponding to Gibellula or Parengyodontium, even at the genera levels, could be detected. Potential explanations for these findings are discussed. These data highlight novel discovery of fungal spider pathogens and open the broader question regarding the environmental distribution and ecological niches of such host-specific pathogens.  more » « less
Award ID(s):
2418026
PAR ID:
10563528
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Journal of Fungi
Volume:
10
Issue:
10
ISSN:
2309-608X
Page Range / eLocation ID:
694
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Graf, Joerg (Ed.)
    ABSTRACT Fungal pathogens, among other stressors, negatively impact the productivity and population size of honey bees, one of our most important pollinators (1, 2), in particular their brood (larvae and pupae) (3, 4). Understanding the factors that influence disease incidence and prevalence in brood may help us improve colony health and productivity. Here, we examined the capacity of a honey bee-associated bacterium, Bombella apis , to suppress the growth of fungal pathogens and ultimately protect bee brood from infection. Our results showed that strains of B. apis inhibit the growth of two insect fungal pathogens, Beauveria bassiana and Aspergillus flavus , in vitro . This phenotype was recapitulated in vivo ; bee broods supplemented with B. apis were significantly less likely to be infected by A. flavus . Additionally, the presence of B. apis reduced sporulation of A. flavus in the few bees that were infected. Analyses of biosynthetic gene clusters across B. apis strains suggest antifungal candidates, including a type 1 polyketide, terpene, and aryl polyene. Secreted metabolites from B. apis alone were sufficient to suppress fungal growth, supporting the hypothesis that fungal inhibition is mediated by an antifungal metabolite. Together, these data suggest that B. apis can suppress fungal infections in bee brood via secretion of an antifungal metabolite. IMPORTANCE Fungi can play critical roles in host microbiomes (5–7), yet bacterial-fungal interactions are understudied. For insects, fungi are the leading cause of disease (5, 8). In particular, populations of the European honey bee ( Apis mellifera ), an agriculturally and economically critical species, have declined in part due to fungal pathogens. The presence and prevalence of fungal pathogens in honey bees have far-reaching consequences, endangering other species and threatening food security (1, 2, 9). Our research highlights how a bacterial symbiont protects bee brood from fungal infection. Further mechanistic work could lead to the development of new antifungal treatments. 
    more » « less
  2. Li, Chengfang (Ed.)
    Irrigation is important in many crop production systems. However, irrigation water can be a carrier of plant pathogens that can enter the system and spread to fields, resulting in crop damage and yield losses. The Lower Rio Grande Valley of South Texas is an important area for agricultural production which depends on the Rio Grande River as a source of water for irrigation. Thus, the presence of plant pathogens in the Rio Grande River could have important implications for crop productivity in the region. Cultured-based methods and molecular identification methods are used for monitoring plant pathogens in irrigation water. However, these methods are labor-intensive and just detect targeted pathogens. To overcome these limitations, in this study, the ITS2 amplicon metagenomic method was applied for evaluating the fungal diversity, composition, and presence of fungal plant pathogens in irrigation water from the Rio Grande River as it leaves the water reservoir (WR) and it arrives at an irrigation valve at a farm (FA). Results from the Shannon (WR = 4.6 ± 0.043, FA = 3.63 ± 0.13) and Simpson indices (WR = 4.6 ± 0.043, FA = 3.63 ± 0.13) showed that there are significant differences in the fungal diversity and community structure between the two locations and the PCA analysis showed a clear differentiation between both fungal communities. Several OTUs identified in both locations included potential plant pathogens from diverse genera including Cladosporium, Exserohilum, and Nigrospora, while others such as Colletotrichum and Plectosphaerella were found only in one of the two locations assessed. This work indicates that microbes, including plant pathogens, may enter or exit throughout the irrigation-water distribution system, thereby modifying the microbial community composition along the way. Understanding the dynamics of plant pathogen movement in irrigation water systems can help growers identify risk factors to develop measures to mitigate those risks. This study also shows the usefulness of the metagenomic approach for detecting and monitoring plant pathogen in irrigation water. 
    more » « less
  3. Tortosa, Pablo (Ed.)
    ABSTRACT Bacteria shape interactions between hosts and fungal pathogens. In some cases, bacteria associated with fungi are essential for pathogen virulence. In other systems, host-associated microbiomes confer resistance against fungal pathogens. We studied an aphid-specific entomopathogenic fungus calledPandora neoaphidisin the context of both host and pathogen microbiomes. Aphids host several species of heritable bacteria, some of which confer resistance againstPandora. We first found that spores that emerged from aphids that harbored protective bacteria were less virulent against subsequent hosts and did not grow on plate media. We then used 16S amplicon sequencing to study the bacterial microbiome of fungal mycelia and spores during plate culturing and host infection. We found that the bacterial community is remarkably stable in culture despite dramatic changes in pathogen virulence. Last, we used an experimentally transformed symbiont of aphids to show thatPandoracan acquire host-associated bacteria during infection. Our results uncover new roles for bacteria in the dynamics of aphid-pathogen interactions and illustrate the importance of the broader microbiological context in studies of fungal pathogenesis. IMPORTANCEEntomopathogenic fungi play important roles in the population dynamics of many insect species. Understanding the factors shaping entomopathogen virulence is critical for agricultural management and for the use of fungi in pest biocontrol. We show that heritable bacteria in aphids, which confer protection to their hosts against fungal entomopathogens, influence virulence against subsequent hosts. Aphids reproduce asexually and are typically surrounded by genetically identical offspring, and thus these effects likely shape the dynamics of fungal disease in aphid populations. Furthermore, fungal entomopathogens are known to rapidly lose virulence in lab culture, complicating their laboratory use. We show that this phenomenon is not driven by changes in the associated bacterial microbiome. These results contribute to our broader understanding of the aphid model system and shed light on the biology of the Entomophthorales—an important but understudied group of fungi. 
    more » « less
  4. The encroachment of woody shrubs into grasslands is a phenomenon that has been occurring in the Chihuahuan Desert since the 1800s. Research shows that extensive livestock grazing and increased drought levels have acted as the main drivers of the grassland-to-shrubland transition. Very few studies have considered the impacts of such vegetation changes on microbial communities. Microbes play important ecosystem roles in nutrient cycling and carbon sequestration but also have the potential to act as pathogens. As the role of microbes in ecosystems is so important, it is crucial to understand the potential impacts of shrub encroachment on microbes and vice versa. Additionally, dryland microbes in general are understudied and as drylands cover over 40% of Earth’s land, understanding these microbes is of great ecological importance. The goal of this study was to assess microbial communities in shrub encroached systems in the Chihuahuan Desert to improve understanding of the ecological impacts of encroachment and increase general knowledge of dryland microbes. To conduct this study, soil samples were collected from sites dominated by black grama grass (Bouteloua eriopoda), sites dominated by honey mesquite shrubs (Prosopis glandulosa), and transition sites with both black grama and mesquite. DNA from soil samples was sequenced for bacteria (16S) and fungi (ITS2). Soil sampling was conducted through five sampling periods across a 10-month range to assess any potential seasonal variation in the microbial communities. In addition to DNA sequencing, microbial biomass and other environmental variables were collected. Statistical analyses were conducted to assess potential differences in microbial communities between vegetation types and seasons. Analyses included assessments of alpha and beta diversity, co-occurrence networks, and differential abundance analyses. Results show that there are significant changes in the microbial communities across vegetation types and seasons. Unique fungal and bacterial communities were identified in association with the different vegetation types, demonstrating that differences in vegetation influence microbial communities. Additionally, findings show that microbial communities are strongly impacted by seasons, showing decreases in biomass and changes to community composition in warm summer months compared to cooler months. Additionally, results show higher proportions of fungal pathogens in grass sites compared to other sites. Overall, this study demonstrates that microbial communities are influenced by shrub encroachment. As dryland microbial communities are often understudied, these findings can provide valuable insight into the ecology of dryland microbes and shrub-encroached systems. 
    more » « less
  5. Lava caves, tubes, and fumaroles in Hawai‘i present a range of volcanic, oligotrophic environments from different lava flows and host unexpectedly high levels of bacterial diversity. These features provide an opportunity to study the ecological drivers that structure bacterial community diversity and assemblies in volcanic ecosystems and compare the older, more stable environments of lava tubes, to the more variable and extreme conditions of younger, geothermally active caves and fumaroles. Using 16S rRNA amplicon-based sequencing methods, we investigated the phylogenetic distinctness and diversity and identified microbial interactions and consortia through co-occurrence networks in 70 samples from lava tubes, geothermal lava caves, and fumaroles on the island of Hawai‘i. Our data illustrate that lava caves and geothermal sites harbor unique microbial communities, with very little overlap between caves or sites. We also found that older lava tubes (500–800 yrs old) hosted greater phylogenetic diversity (Faith's PD) than sites that were either geothermally active or younger (<400 yrs old). Geothermally active sites had a greater number of interactions and complexity than lava tubes. Average phylogenetic distinctness, a measure of the phylogenetic relatedness of a community, was higher than would be expected if communities were structured at random. This suggests that bacterial communities of Hawaiian volcanic environments are phylogenetically over-dispersed and that competitive exclusion is the main driver in structuring these communities. This was supported by network analyses that found that taxa (Class level) co-occurred with more distantly related organisms than close relatives, particularly in geothermal sites. Network “hubs” (taxa of potentially higher ecological importance) were not the most abundant taxa in either geothermal sites or lava tubes and were identified as unknown families or genera of the phyla, Chloroflexi and Acidobacteria. These results highlight the need for further study on the ecological role of microbes in caves through targeted culturing methods, metagenomics, and long-read sequence technologies. 
    more » « less