Designing a senior-level course that involves problem-based learning, including project completion task, is laborious and challenging. A well-designed project motivates the students to be self-learners and prepares them for future industrial or academic endeavors. The COVID-19 pandemic brought many challenges when instructions were forced to move either online or to a remote teaching/learning environment. Due to this rapid transition, delivery modes in teaching and learning modalities faced disruption making course design more difficult. The senior level Flight Controls course AME - 4513 is designed with Unmanned Aerial Systems (UAS) related projects for the students to have a better understanding of UAS usage on various applications in support of Advanced Technological Education (ATE) program. The purpose of this paper is to present the UAS lab modules in a junior level robotics lab, AME - 4802, which preceded the Flight Controls course in the school of Aerospace and Mechanical Engineering at the University of Oklahoma. Successfully completing the course project requires independent research and involves numerical simulations of UAS. The Robotics Lab course focuses on hands-on projects of robotic systems with an emphasis on semi-autonomous mobile robots, including an UAS introduction module. - The UAS module in the Robotics Lab class is introduced in Spring 2020. Therefore, most of the students enrolled in the Spring 2020 Robotics Lab course have introductory knowledge about the UAS system when taking the Fall 2020 Flight Control course. In addition, Spring 2020 Robotics Lab was affected due to COVID-19. - The UAS module was not introduced in 2019 Spring Robotics lab. Thus, the students enrolled in Fall 2019 Flight Controls course did not have prior knowledge on the UAS system. - We thus present the implementation of UAS module in a junior level robotics lab which preceded the senior level Flight Controls course in following Fall semester, when the same instructor taught the course.
more »
« less
This content will become publicly available on January 3, 2026
Engaging 6th-Grade Students in Ecosystem Education: Exploring Roles and Relationships in Ecology With an Interactive Gamified Module
Gamified simulations, integrating gameplay into education, cater to younger learners’ digital preferences and align with Next Generation Science Standards. Current virtual modules focus on advanced high school classes, leaving a gap for middle school students. This study investigated the impact of substituting recitations in a 6th-grade ecology class with Feed the Dingo, a gamified module. Through quizzes evaluating academic performance and free-response surveys to gauge students’ attitudes, the module appeared to enhance intuitive understanding of core ecological concepts (e.g., ecosystems, food webs, biodiversity, etc.), resulting in commendable academic achievement and positive feedback. Such simulations serve as valuable supplements for K-12 lesson planning.
more »
« less
- Award ID(s):
- 2203680
- PAR ID:
- 10564593
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- Journal of Education
- Volume:
- 205
- Issue:
- 2
- ISSN:
- 0022-0574
- Format(s):
- Medium: X Size: p. 130-141
- Size(s):
- p. 130-141
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
During the abrupt and unplanned transition to remote online learning formats due to the COVID-19 outbreak, educators have had to adopt new teaching methods. For instance, online simulations tailored to specific curriculum topics emerged, allowing students to apply their knowledge creatively, with potentially positive effects on engagement and learning efficacy. Here, we examine the implementation of the “Save the World” simulation, created by Wonderville.org, in a high school Advanced Placement Environmental Science classroom in a remote online learning setting. In this module, students determine the most viable renewable energy generation option for given environments. Based on student and teacher feedback, the simulation effectively delivers educational material and promotes student engagement, demonstrating that online simulations can serve as a viable tool to enhance environmental science education and remote learning.more » « less
-
In today’s fast-paced software development environments, DevOps has revolutionized the way teams build, test, and deploy applications by emphasizing automation, collaboration, and continuous integration/continuous delivery (CI/CD). However, with these advancements comes an increased need to address security proactively, giving rise to the DevSecOps movement, which integrates security practices into every phase of the software development lifecycle. DevOps security remains underrepresented in academic curricula despite its growing importance in the industry. To address this gap, this paper presents a handson learning module that combines Chaos Engineering and Whitebox Fuzzing to teach core principles of secure DevOps practices in an authentic, scenario-driven environment. Chaos Engineering allows students to intentionally disrupt systems to observe and understand their resilience, while White-box Fuzzing enables systematic exploration of internal code paths to discover cornercase vulnerabilities that typical tests might miss. The module was deployed across three academic institutions, and both pre- and post-surveys were conducted to evaluate its impact. Pre-survey data revealed that while most students had prior experience in software engineering and cybersecurity, the majority lacked exposure to DevOps security concepts. Post-survey responses gathered through ten structured questions showed highly positive feedback 66.7% of students strongly agreed, and 22.2% agreed that the hands-on labs improved their understanding of secure DevOps practices. Participants also reported increased confidence in secure coding, vulnerability detection, and resilient infrastructure design. These findings support the integration of experiential learning techniques like chaos simulations and white-box fuzzing into security education. By aligning academic training with realworld industry needs, this module effectively prepares students for the complex challenges of modern software development and operations.more » « less
-
Abstract Greenspace in schools might enhance students' academic performance. However, the literature—dominated by ecological studies at the school level in countries from the Northern Hemisphere—presents mixed evidence of a beneficial association. We evaluated the association between school greenness and student‐level academic performance in Santiago, Chile, a capital city of the Global South. This cross‐sectional study included 281,695 fourth‐grade students attending 1,498 public, charter, and private schools in Santiago city between 2014 and 2018. Student‐level academic performance was assessed using standardized test scores and indicators of attainment of learning standards in mathematics and reading. School greenness was estimated using Normalized Difference Vegetation Index (NDVI). Linear and generalized linear mixed‐effects models were fit to evaluate associations, adjusting for individual‐ and school‐level sociodemographic factors. Analyses were stratified by school type. In fully adjusted models, a 0.1 increase in school greenness was associated with higher test scores in mathematics (36.9 points, 95% CI: 2.49; 4.88) and in reading (1.84 points, 95% CI: 0.73; 2.95); as well as with higher odds of attaining learning standards in mathematics (OR: 1.20, 95% CI: 1.12; 1.28) and reading (OR: 1.07, 95% CI: 1.02; 1.13). Stratified analysis showed differences by school type, with associations of greater magnitude and strength for students attending public schools. No significant associations were detected for students in private schools. Higher school greenness was associated with improved individual‐level academic outcomes among elementary‐aged students in a capital city in South America. Our results highlight the potential of greenness in the school environment to moderate educational and environmental inequalities in urban areas.more » « less
-
null (Ed.)Effective gamification can only be based on understanding the relationship between learner motivation and the game elements which are used to gamify learning activities. Although frequently mentioned, Virtual Currency (VC) remains underused and scarcely studied in educational gamification. As a motivational affordance, VC can be thought of as supporting different types of motivation, but currently, there is a lack of empirical studies which investigate this. Recognizing this gap, the purpose of our study was to empirically investigate whether and how gamifying learning activities with virtual currency can engender motivation for out-of-class practicing and what type of motivation. In the limited research others have conducted, VC has been studied largely in combination with other game elements, which does not allow reaching reliable conclusions about the impact of the individual elements. For this reason, we studied the effects of VC in a gamified Discrete Math course isolated from other game elements. The study showed that using VC to gamify practicing increased students’ practicing activity, which resulted in improved academic performance. The study also revealed that while gamified practicing did not increase students’ intrinsic motivation, it supported internalization of motivation towards this learning activity.more » « less
An official website of the United States government
