skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Visual Expertise Explains Image Inversion Effects
We present an anatomically-inspired neurocomputational model, including a foveated retina and the log-polar mapping from the visual field to the primary visual cortex, that recreates image inversion effects long seen in psychophysical studies. We show that visual expertise, the ability to discriminate between subordinate-level categories, changes the performance of the model on inverted images. We first explore face discrimination, which, in humans, relies on configural information. The log-polar transform disrupts configural information in an inverted image and leaves featural information relatively unaffected. We suggest this is responsible for the degradation of performance with inverted faces. We then recreate the effect with other subordinate-level category discriminators and show that the inversion effect arises as a result of visual expertise, where configural information becomes relevant as more identities are learned at the subordinate-level. Our model matches the classic result: faces suffer more from inversion than mono-oriented objects, which are more disrupted than non-mono-oriented objects when objects are only familiar at a basic-level, and simultaneously shows that expert-level discrimination of other subordinate-level categories respond similarly to inversion as face experts.  more » « less
Award ID(s):
2208362
PAR ID:
10564655
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Fumero, Marco; Rodolà, Emanuele; Domine, Clementine; Locatello, Francesco; Dziugaite, Gintare Karolina; Caron, Mathilde
Publisher / Repository:
Proceedings of Machine Learning Research Volume 243
Date Published:
Edition / Version:
1.0
Volume:
243
Page Range / eLocation ID:
279-290
Subject(s) / Keyword(s):
Face recognition Computational Cognitive Neuroscience Face Inversion Effect Log-Polar Transform
Format(s):
Medium: X Other: pdf
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    People can relatively easily report summary properties for ensembles of objects, suggesting that this information can enrich visual experience and increase the efficiency of perceptual processing. Here, we ask whether the ability to judge diversity within object arrays improves with experience. We surmised that ensemble judgments would be more accurate for commonly experienced objects, and perhaps even more for objects of expertise like faces. We also expected improvements in ensemble processing with practice with a novel category, and perhaps even more with repeated experience with specific exemplars. We compared the effect of experience on diversity judgments for arrays of objects, with participants being tested with either a small number of repeated exemplars or with a large number of exemplars from the same object category. To explore the role of more prolonged experience, we tested participants with completely novel objects (random-blobs), with objects familiar at the category level (cars), and with objects with which observers are experts at subordinate-level recognition (faces). For objects that are novel, participants showed evidence of improved ability to distribute attention. In contrast, for object categories with long-term experience, i.e., faces and cars, performance improved during the experiment but not necessarily due to improved ensemble processing. Practice with specific exemplars did not result in better diversity judgments for all object categories. Considered together, these results suggest that ensemble processing improves with experience. However, the role of experience is rapid, does not rely on exemplar-level knowledge and may not benefit from subordinate-level expertise. 
    more » « less
  2. The human face conveys a wealth of information, including traits, states, and intentions. Just as fundamentally, the face also signals the humanity of a person. In the current research we report two experiments providing evidence that disruptions of configural face encoding affect the temporal dynamics of categorization during attempts to distinguish human from non-human faces. Specifically, the present experiments utilize mouse-tracking and find that face inversion elicits confusion amongst human and non-human categories early in the processing of human faces. This work affords the first examination of how facial inversion affects the dynamic processes underlying categorization of human and non-human faces. 
    more » « less
  3. Spatial processing by receptive fields is a core property of the visual system. However, it is unknown how spatial processing in high-level regions contributes to recognition behavior. As face inversion is thought to disrupt typical holistic processing of information in faces, we mapped population receptive fields (pRFs) with upright and inverted faces in the human visual system. Here we show that in face-selective regions, but not primary visual cortex, pRFs and overall visual field coverage are smaller and shifted downward in response to face inversion. From these measurements, we successfully predict the relative behavioral detriment of face inversion at different positions in the visual field. This correspondence between neural measurements and behavior demonstrates how spatial processing in face-selective regions may enable holistic perception. These results not only show that spatial processing in high-level visual regions is dynamically used towards recognition, but also suggest a powerful approach for bridging neural computations by receptive fields to behavior. 
    more » « less
  4. null (Ed.)
    When objects from two categories of expertise (e.g., faces and cars in dual car/face experts) are processed simultaneously, competition occurs across a variety of tasks. Here, we investigate whether competition between face and car processing also occurs during ensemble coding. The relationship between single object recognition and ensemble coding is debated, but if ensemble coding relies on the same ability as object recognition, we expect cars to interfere with ensemble coding of faces as a function of car expertise. We measured the ability to judge the variability in identity of arrays of faces, in the presence of task irrelevant distractors (cars or novel objects). On each trial, participants viewed two sequential arrays containing four faces and four distractors, judging which array was the more diverse in terms of face identity. We measured participants’ car expertise, object recognition ability, and face recognition ability. Using Bayesian statistics, we found evidence against competition as a function of car expertise during ensemble coding of faces. Face recognition ability predicted ensemble judgments for faces, regardless of the category of task-irrelevant distractors. The result suggests that ensemble coding is not susceptible to competition between different domains of similar expertise, unlike single-object recognition. 
    more » « less
  5. Holistic processing (HP) of faces refers to the obligatory, simultaneous processing of the parts and their relations, and it emerges over the course of development. HP is manifest in a decrement in the perception of inverted versus upright faces and a reduction in face processing ability when the relations between parts are perturbed. Here, adopting the HP framework for faces, we examined the developmental emergence of HP in another domain for which human adults have expertise, namely, visual word processing. Children, adolescents, and adults performed a lexical decision task and we used two established signatures of HP for faces: the advantage in perception of upright over inverted words and nonwords and the reduced sensitivity to increasing parts (word length). Relative to the other groups, children showed less of an advantage for upright versus inverted trials and lexical decision was more affected by increasing word length. Performance on these HP indices was strongly associated with age and with reading proficiency. Also, the emergence of HP for word perception was not simply a result of improved visual perception over the course of development as no group differences were observed on an object decision task. These results reveal the developmental emergence of HP for orthographic input, and reflect a further instance of experience-dependent tuning of visual perception. These results also add to existing findings on the commonalities of mechanisms of word and face recognition. 
    more » « less