Abstract Energetic electron precipitation (EEP) associated with pulsating aurora can transfer greater than 30 keV electrons from the outer radiation belt region into the upper atmosphere and can deplete atmospheric ozone via collisions that produce NOx and HOx molecules. Our knowledge of exactly how EEP occurs is incomplete. Previous studies have shown that pitch angle scattering between electrons and lower‐band chorus waves can cause pulsating aurora associated with EEP and that substorms play an important role. In this work, we quantify the timescale of chorus wave decay following substorms and compare that to previously determined timescales. We find that the chorus decay e‐folding time varies based on magnetic local time (MLT), magnetic latitude, and wave frequency. The shortest timescales occur for lower‐band chorus in the 21 to 9 MLT region and compares, within uncertainty, to the energetic pulsating aurora timescale of Troyer et al. (2022,https://doi.org/10.3389/fspas.2022.1032552) for energetic pulsating aurora. We are able to further support this connection by modeling our findings in a quasi‐linear diffusion simulation. These results provide observations of how chorus waves behave after substorms and add additional statistical evidence linking energetic pulsating aurora to substorm driven lower‐band chorus waves.
more »
« less
The impact of drifting substorm-injected electrons on pulsating aurora initiation and intensification
Pulsating aurora, which consists of diffuse patches blinking on and off, is caused by pitch angle scattering of radiation belt electrons into the loss cone by lower-band chorus waves. Understanding the drivers of pulsating aurora is important as it is a long-lasting and widespread phenomenon, accounting for significant energy transfer from the solar wind into the ionosphere. Substorm injections, which transport electrons from the magnetotail into the inner magnetosphere, are one source of electrons in this region. Injections have been observed simultaneously with pulsating aurora during conjunctions between ground cameras and satellites. In addition, previous work has also shown that substorms can enhance chorus activity (the fundamental process that produces pulsating aurora), providing a mechanism linking substorms to pulsating aurora. To further study this connection, we used the Van Allen Probes and all-sky cameras to look at events where pulsating aurora and substorm injections were observed at different locations in Magnetic Local Time (MLT), rather than focusing only on conjunctions. To make this comparison, we calculated the drift rate of electrons originating from observed injections and projected their motion forward in time until their Magnetic Local Time was the same as the ground camera. When the electrons are located at the same MLT as the ground camera, the pulsating aurora they cause would most likely occur in the field of view of the camera. We compared the time drifting substorm-injected particles arrived at the MLT of the camera to when pulsating aurora was observed. We found several instances where the initiation or intensification of pulsating aurora was accompanied by the arrival of substorm-injected electrons. This observation gives further evidence that pulsating aurora can be enhanced by or occur after substorm injections.
more »
« less
- Award ID(s):
- 2045016
- PAR ID:
- 10564663
- Publisher / Repository:
- Frontiers in Astronomy and Space Sciences
- Date Published:
- Journal Name:
- Frontiers in Astronomy and Space Sciences
- Volume:
- 11
- ISSN:
- 2296-987X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Pulsating aurora are common diffuse-like aurora. Studies have suggested that they contain higher energy particles than other types and are possibly linked to substorm activity. There has yet to be a quantitative statistical study of the variation in pulsating aurora energy content related to substorms. We analyzed the inverted energy content from 53 events using the Poker Flat Incoherent Scatter Radar. To reduce the uncertainty, we split the differential energy flux into low and high energy using the limit of 30 keV. We also analyzed the lower altitude boundary of the electron density profile, characterized by a number density of > 1 0 10 m −3 , and used this as a proxy for high energy. We compared both of these to magnetic local time (MLT), AE index, and temporal proximity to substorm onset. There was a slight trend in MLT, but a much stronger one in relation to both substorm onset and AE index. For higher AE and closer to onset the total energy flux and flux above 30 keV increased. In addition, this higher energy remained enhanced for an hour after substorm onset. Our results confirm the high energy nature of pulsating aurora, demonstrate the connection to substorms, and imply their importance to coupling between the magnetosphere and atmosphere.more » « less
-
Abstract Although many substorm‐related observations have been made, we still have limited insight into propagation of the plasma and field perturbations in Pi2 frequencies (∼7–25 mHz) in association with substorm aurora, particularly from the auroral source region in the inner magnetosphere to the ground. In this study, we present conjugate observations of a substorm brightening aurora using an all‐sky camera and an inner‐magnetospheric satellite Arase atL ∼ 5. A camera at Gakona (62.39°N, 214.78°E), Alaska, observed a substorm auroral brightening on 28 December 2018, and the footprint of the satellite was located just equatorward of the aurora. Around the timing of the auroral brightening, the satellite observed a series of quasi‐periodic variations in the electric and magnetic fields and in the energy flux of electrons and ions. We demonstrate that the diamagnetic variations of thermal pressure and medium‐energy ion energy flux in the inner magnetosphere show approximately one‐to‐one correspondence with the oscillations in luminosity of the substorm brightening aurora and high‐latitudinal Pi2 pulsations on the ground. We also found their anti‐correlation with low‐energy electrons. Cavity‐type Pi2 pulsations were observed at mid‐ and low‐latitudinal stations. Based on these observations, we suggest that a wave phenomenon in the substorm auroral source region, like ballooning type instability, play an important role in the development of substorm and related auroral brightening and high‐latitude Pi2, and that the variation of the auroral luminosity was directly driven by keV electrons which were modulated by Alfven waves in the inner magnetosphere.more » « less
-
Abstract Whistler‐mode chorus waves play an essential role in the acceleration and loss of energetic electrons in the Earth’s inner magnetosphere, with the more intense waves producing the most dramatic effects. However, it is challenging to predict the amplitude of strong chorus waves due to the imbalanced nature of the data set, that is, there are many more non‐chorus data points than strong chorus waves. Thus, traditional models usually underestimate chorus wave amplitudes significantly during active times. Using an imbalanced regressive (IR) method, we develop a neural network model of lower‐band (LB) chorus waves using 7‐year observations from the EMFISIS instrument onboard Van Allen Probes. The feature selection process suggests that the auroral electrojet index alone captures most of the variations of chorus waves. The large amplitude of strong chorus waves can be predicted for the first time. Furthermore, our model shows that the equatorial LB chorus’s spatiotemporal evolution is similar to the drift path of substorm‐injected electrons. We also show that the chorus waves have a peak amplitude at the equator in the source MLT near midnight, but toward noon, there is a local minimum in amplitude at the equator with two off‐equator amplitude peaks in both hemispheres, likely caused by the bifurcated drift paths of substorm injections on the dayside. The IR‐based chorus model will improve radiation belt prediction by providing chorus wave distributions, especially storm‐time strong chorus. Since data imbalance is ubiquitous and inherent in space physics and other physical systems, imbalanced regressive methods deserve more attention in space physics.more » « less
-
Abstract To understand magnetosphere‐ionosphere conditions that result in thermal emission velocity enhancement (STEVE) and subauroral ion drifts (SAID) during the substorm recovery phase, we present substorm aurora, particle injection, and current systems during two STEVE events. Those events are compared to substorm events with similar strength but without STEVE. We found that the substorm surge and intense upward currents for the events with STEVE reach the dusk, while those for the non‐STEVE substorms are localized around midnight. The Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite observations show that location of particle injection and fast plasma sheet flows for the STEVE events also shifts duskward. Electron injection is stronger and ion injection is weaker for the STEVE events compared to the non‐STEVE events. SAID are measured by Super Dual Auroral Radar Network during the STEVE events, but the non‐STEVE events only showed latitudinally wide subauroral polarization streams without SAID. To interpret the observations, Rice Convection Model (RCM) simulations with injection at premidnight and midnight have been conducted. The simulations successfully explain the stronger electron injection, weaker ion injection, and formation of SAID for injection at premidnight, because injected electrons reach the premidnight inner magnetosphere and form a narrower separation between the ion and electron inner boundaries. We suggest that substorms and particle injections extending far duskward away from midnight offer a condition for creating STEVE and SAID due to stronger electron injection to premidnight. The THEMIS all‐sky imager network identified the east‐west length of the STEVE arc to be ~1900 km (~2.5 h magnetic local time) and the duration to be 1–1.5 h.more » « less
An official website of the United States government

