skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Genomic analysis of hyperparasitic viruses associated with entomopoxviruses
Abstract Polinton-like viruses (PLVs) are a diverse group of small integrative dsDNA viruses that infect diverse eukaryotic hosts. Many PLVs are hypothesized to parasitize viruses in the phylum Nucleocytoviricota for their own propagation and spread. Here, we analyze the genomes of novel PLVs associated with the occlusion bodies of entomopoxvirus (EPV) infections of two separate lepidopteran hosts. The presence of these elements within EPV occlusion bodies suggests that they are the first known hyperparasites of poxviruses. We find that these PLVs belong to two distinct lineages that are highly diverged from known PLVs. These PLVs possess mosaic genomes, and some essential genes share homology with mobile genes within EPVs. Based on this homology and observed PLV mosaicism, we propose a mechanism to explain the turnover of PLV replication and integration genes.  more » « less
Award ID(s):
2141862
PAR ID:
10564671
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Virus Evolution
Volume:
10
Issue:
1
ISSN:
2057-1577
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Parent, Kristin N (Ed.)
    ABSTRACT Members of the phylumNucleocytoviricota, which include “giant viruses” known for their large physical dimensions and genome lengths, are a diverse group of dsDNA viruses that infect a wide range of eukaryotic hosts. The genomes of nucleocytoviruses frequently encode eukaryotic signature proteins (ESPs) such as RNA- and DNA-processing proteins, vesicular trafficking factors, cytoskeletal components, and proteins involved in ubiquitin signaling. Despite the prevalence of these genes in many nucleocytoviruses, the timing and number of gene acquisitions remains unclear. While the presence of DNA- and RNA-processing proteins in nucleocytoviruses likely reflects ancient gene transfers, the origins and evolutionary history of other proteins are largely unknown. In this study, we examined the distribution and evolutionary history of a subset of viral-encoded ESPs (vESPs) that are widespread in nucleocytoviruses. Our results demonstrate that most vESPs involved in vesicular trafficking were acquired multiple times independently by nucleocytoviruses at different time points after the emergence of the eukaryotic supergroups, while viral proteins associated with cytoskeletal and ubiquitin system proteins exhibited a more complex evolutionary pattern exhibited by both shallow and deep branching viral clades. This pattern reveals a dynamic interplay between the co-evoluton of eukaryotes and their viruses, suggesting that the viral acquisition of many genes involved in cellular processes has occurred both through ancient and more recent horizontal gene transfers. The timing and frequency of these gene acquisitions may provide insight into their role and functional significance during viral infection.IMPORTANCEThis research is pertinent for understanding the evolution of nucleocytoviruses and their interactions with eukaryotic hosts. By investigating the distribution and evolutionary history of viral-encoded eukaryotic signature proteins, the study reveals gene transfer patterns, highlighting how viruses acquire genes that allow them to manipulate host cellular processes. Identifying the timing and frequency of gene acquisitions related to essential cellular functions provides insights into their roles during viral infections. This work expands our understanding of viral diversity and adaptability, contributing valuable knowledge to virology and evolutionary biology, while offering new perspectives on the relationship between viruses and their hosts. 
    more » « less
  2. Abstract Aphids are hosts to diverse viruses and are important vectors of plant pathogens. The spread of viruses is heavily influenced by aphid movement and behaviour. Consequently, wing plasticity (where individuals can be winged or wingless depending on environmental conditions) is an important factor in the spread of aphid‐associated viruses. We review several fascinating systems where aphid‐vectored plant viruses interact with aphid wing plasticity, both indirectly by manipulating plant physiology and directly through molecular interactions with plasticity pathways. We also cover recent examples where aphid‐specific viruses and endogenous viral elements within aphid genomes influence wing formation. We discuss why unrelated viruses with different transmission modes have convergently evolved to manipulate wing formation in aphids and whether this is advantageous for both host and virus. We argue that interactions with viruses are likely shaping the evolution of wing plasticity within and across aphid species, and we discuss the potential importance of these findings for aphid biocontrol. 
    more » « less
  3. Abstract Diverse members of early-diverging Mucoromycota, including mycorrhizal taxa and soil-associated Mortierellaceae, are known to harbor Mollicutes-related endobacteria (MRE). It has been hypothesized that MRE were acquired by a common ancestor and transmitted vertically. Alternatively, MRE endosymbionts could have invaded after the divergence of Mucoromycota lineages and subsequently spread to new hosts horizontally. To better understand the evolutionary history of MRE symbionts, we generated and analyzed four complete MRE genomes from two Mortierellaceae genera:Linnemannia(MRE-L) andBenniella(MRE-B). These genomes include the smallest known of fungal endosymbionts and showed signals of a tight relationship with hosts including a reduced functional capacity and genes transferred from fungal hosts to MRE. Phylogenetic reconstruction including nine MRE from mycorrhizal fungi revealed that MRE-B genomes are more closely related to MRE from Glomeromycotina than MRE-L from the same host family. We posit that reductions in genome size, GC content, pseudogene content, and repeat content in MRE-L may reflect a longer-term relationship with their fungal hosts. These data indicateLinnemanniaandBenniellaMRE were likely acquired independently after their fungal hosts diverged from a common ancestor. This work expands upon foundational knowledge on minimal genomes and provides insights into the evolution of bacterial endosymbionts. 
    more » « less
  4. Bordenstein, Seth (Ed.)
    ABSTRACT Viruses belonging to the Nucleocytoviricota phylum are globally distributed and include members with notably large genomes and complex functional repertoires. Recent studies have shown that these viruses are particularly diverse and abundant in marine systems, but the magnitude of actively replicating Nucleocytoviricota present in ocean habitats remains unclear. In this study, we compiled a curated database of 2,431 Nucleocytoviricota genomes and used it to examine the gene expression of these viruses in a 2.5-day metatranscriptomic time-series from surface waters of the California Current. We identified 145 viral genomes with high levels of gene expression, including 90 Imitervirales and 49 Algavirales viruses. In addition to recovering high expression of core genes involved in information processing that are commonly expressed during viral infection, we also identified transcripts of diverse viral metabolic genes from pathways such as glycolysis, the TCA cycle, and the pentose phosphate pathway, suggesting that virus-mediated reprogramming of central carbon metabolism is common in oceanic surface waters. Surprisingly, we also identified viral transcripts with homology to actin, myosin, and kinesin domains, suggesting that viruses may use these gene products to manipulate host cytoskeletal dynamics during infection. We performed phylogenetic analysis on the virus-encoded myosin and kinesin proteins, which demonstrated that most belong to deep-branching viral clades, but that others appear to have been acquired from eukaryotes more recently. Our results highlight a remarkable diversity of active Nucleocytoviricota in a coastal marine system and underscore the complex functional repertoires expressed by these viruses during infection. IMPORTANCE The discovery of giant viruses has transformed our understanding of viral complexity. Although viruses have traditionally been viewed as filterable infectious agents that lack metabolism, giant viruses can reach sizes rivalling cellular lineages and possess genomes encoding central metabolic processes. Recent studies have shown that giant viruses are widespread in aquatic systems, but the activity of these viruses and the extent to which they reprogram host physiology in situ remains unclear. Here, we show that numerous giant viruses consistently express central metabolic enzymes in a coastal marine system, including components of glycolysis, the TCA cycle, and other pathways involved in nutrient homeostasis. Moreover, we found expression of several viral-encoded actin, myosin, and kinesin genes, indicating viral manipulation of the host cytoskeleton during infection. Our study reveals a high activity of giant viruses in a coastal marine system and indicates they are a diverse and underappreciated component of microbial diversity in the ocean. 
    more » « less
  5. Hom, Erik_F Y (Ed.)
    ABSTRACT Viruses that infect phytoplankton are an integral part of marine ecosystems, but the vast majority of viral diversity remains uncultivated. Here, we introduce four near-complete genomic assemblies of viruses that infect the widespread marine picoeukaryoteMicromonas commoda, doubling the number of reported genomes ofMicromonasdsDNA viruses. All host and virus isolates were obtained from tropical waters of the North Pacific, a first for viruses infecting green algae in the order Mamiellales. Genome length of the new isolates ranges from 205 to 212 kb, and phylogenetic analysis shows that all four are members of the genusPrasinovirus. Three of the viruses form a clade that is adjacent to previously sequencedMicromonasviruses, while the fourth virus is relatively divergent from previously sequenced prasinoviruses. We identified 61 putative genes not previously found in prasinovirus isolates, including a phosphate transporter and a potential apoptosis inhibitor novel to marine viruses. Forty-eight genes in the new viruses are also found in host genome(s) and may have been acquired through horizontal gene transfer. By analyzing the coding sequences of all published prasinoviruses, we found that ~25% of prasinovirus gene content is significantly correlated with host genus identity (i.e.,Micromonas,Ostreococcus, orBathycoccus), and the functions of these genes suggest that much of the viral life cycle is differentially adapted to the three host genera. Mapping of metagenomic reads from global survey data indicates that one of the new isolates, McV-SA1, is relatively common in multiple ocean basins.IMPORTANCEThe genomes analyzed here represent the first viruses from the tropical North Pacific that infect the abundant phytoplankton order Mamiellales. Comparing isolates from the same location demonstrates high genomic diversity among viruses that co-occur and presumably compete for hosts. Comparing all published prasinovirus genomes highlights gene functions that are likely associated with adaptation to different host genera. Metagenomic data indicate these viruses are globally distributed, and one of the novel isolates may be among the most abundant marine viruses. 
    more » « less