skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Insights on Sustainability of Earth Science Data Infrastructure Projects
We studied 11 long-term data infrastructure projects, most of which focused on the Earth Sciences, to understand characteristics that contributed to their project sustainability. Among our sample group, we noted the existence of three different types of project groupings: Database, Framework, and Middleware. Most efforts started as federally funded research projects, and our results show that nearly all became organizations in order to become sustainable. Projects were often funded for short time scales but had the long-term burden of sustaining and supporting open science, interoperability, and community building–activities that are difficult to fund directly. This transition from ‘project’ to ‘organization’ was challenging for most efforts, especially in regard to leadership change and funding issues.Some common approaches to sustainability were identified within each project grouping. Framework and Database projects both relied heavily on the commitment to, and contribution from, a disciplinary community. Framework projects often used bottom-up governance approaches to maintain the active participation and interest of their community. Database projects succeeded when they were able to position themselves as part of the core workflow for disciplinary-specific scientific research. Middleware projects borrowed heavily from sustainability models used by software companies, while maintaining strong scientific partnerships. Cyberinfrastructure for science requires considerable resources to develop and sustain itself, and much of these resources are provided through in-kind support from academics, researchers, and their institutes. It is imperative that more work is done to find appropriate models that help sustain key data infrastructure for Earth Science over the long-term.  more » « less
Award ID(s):
1928273
PAR ID:
10564691
Author(s) / Creator(s):
; ;
Publisher / Repository:
upiquity press
Date Published:
Journal Name:
Data Science Journal
Volume:
23
ISSN:
1683-1470
Page Range / eLocation ID:
14
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper shares four Sea Grant-funded projects from across the United States. The Hawai‘i project integrates Western science and Hawaiian culture in place- and community-based teaching. The Maryland program takes a project-based learning approach to aquaculture education in the formal education system. The Massachusetts (MIT) project focuses on state-of-the-art technology in engineering, robotics, and ocean science. The Virginia project emphasizes science communication and lesson plan design. What all four projects have in common is their focus on environmental literacy and teacher professional development in formal education. This approach aims to raise the quality of STEM instruction by expanding teachers’ knowledge, skills, and resources. Training teachers also efficiently utilizes resources by maximizing the number of students we ultimately reach, thereby creating sustainability. 
    more » « less
  2. Long-term environmental research networks are one approach to advancing local, regional, and global environmental science and education. A remarkable number and wide variety of environmental research networks operate around the world today. These are diverse in funding, infrastructure, motivating questions, scientific strengths, and the sciences that birthed and maintain the networks. Some networks have individual sites that were selected because they had produced invaluable long-term data, while other networks have new sites selected to span ecological gradients. However, all long-term environmental networks share two challenges. Networks must keep pace with scientific advances and interact with both the scientific community and society at large. If networks fall short of successfully addressing these challenges, they risk becoming irrelevant. The objective of this paper is to assert that the biogeosciences offer environmental research networks a number of opportunities to expand scientific impact and public engagement. We explore some of these opportunities with four networks: the International Long-Term Ecological Research Network programs (ILTERs), critical zone observatories (CZOs), Earth and ecological observatory networks (EONs), and the FLUXNET program of eddy flux sites. While these networks were founded and expanded by interdisciplinary scientists, the preponderance of expertise and funding has gravitated activities of ILTERs and EONs toward ecology and biology, CZOs toward the Earth sciences and geology, and FLUXNET toward ecophysiology and micrometeorology. Our point is not to homogenize networks, nor to diminish disciplinary science. Rather, we argue that by more fully incorporating the integration of biology and geology in long-term environmental research networks, scientists can better leverage network assets, keep pace with the ever-changing science of the environment, and engage with larger scientific and public audiences. 
    more » « less
  3. null (Ed.)
    Natural disasters, such as 2017 hurricanes Irma and María, the 2020 earthquakes in Puerto Rico and the ongoing COVID-19 pandemic, affect students in many aspects including economic, socio-emotional, and academic performance progress. To ensure that students can cope with the aftermath of such searing events, it is necessary to develop initiatives that address these three aspects. Satisfying the financial need is essential, but a long-term solution is mandatory. Hence, providing socio-emotional and academic support and cultivating a sense of purpose are critical to prevent attrition. To secure continued STEM success among students affected by natural disasters, the National Science Foundation has funded several projects at the University of Puerto Rico, a Hispanic Serving Institution. This manuscript presents four NSF-funded projects sharing the common goal of providing support to STEM students to ensure that they succeed despite the said challenges. The first project, titled Nanotechnology Center for Biomedical, Environmental and Sustainability Application, leans heavily on research teams dedicated to design new Nanotechnology platforms to address biomedical and environmental challenges and simultaneously trains a new generation of nanoengineers and nanoscientists throughout the educational echelon starting from public intermediate schools through doctoral programs. The second project, entitled Ecosystem to Expand Capabilities and Opportunities for STEM-Scholars (EECOS), developed an integrated framework that provides support to 62 low-income, talented, STEM students who were severely affected by Hurricane María and 2019-2020 earthquakes (58 undergraduate and 4 graduate). The project provided participants with financial, academic, socio-emotional, and career motivation support needed to complete their programs. The third project, Program for Engineering Access, Retention, and LIATS Success (PEARLS) addresses college access and economic hardships of Low-Income Academically Talented Students (LIATS). It aims at increasing the retention and academic success of talented engineering students coming from economically disadvantaged families. The fourth project, Resilient Infrastructure and Sustainability Education – Undergraduate Program (RISE-UP), has developed an interdisciplinary curriculum to educate cadres of Hispanic students on infrastructure resilience to temper and to overcome the effects of such natural disasters. Three campuses of this institution system collaborate in this interdisciplinary undertaking. Participating students are pursuing undergraduate degrees in engineering, architecture, and surveying who take the entailed courses together and participate in co-curricular activities (both online and in-person through site visits). The new curricular endeavor prepares them to design infrastructure that can withstand the impact of natural events. The expect outcome is to form cohorts of graduates ready to take on real-life infrastructure failures caused by disasters and provide them with an edge in their future professions. The present work provides a range of scalable and portable strategies that universities with underrepresented minorities in STEM programs could deploy to address the immediate and continued needs of students affected by natural disasters to secure academic success. These strategies can contribute to the development of professionals with the skills and experience to deal with severe circumstances such as those effected by natural disasters as well as the preparation to solve infrastructure challenges. 
    more » « less
  4. null (Ed.)
    Natural disasters, such as 2017 hurricanes Irma and María, the 2020 earthquakes in Puerto Rico and the ongoing COVID-19 pandemic, affect students in many aspects including economic, socio-emotional, and academic performance progress. To ensure that students can cope with the aftermath of such searing events, it is necessary to develop initiatives that address these three aspects. Satisfying the financial need is essential, but a long-term solution is mandatory. Hence, providing socio-emotional and academic support and cultivating a sense of purpose are critical to prevent attrition. To secure continued STEM success among students affected by natural disasters, the National Science Foundation has funded several projects at the University of Puerto Rico, a Hispanic Serving Institution. This manuscript presents four NSF-funded projects sharing the common goal of providing support to STEM students to ensure that they succeed despite the said challenges. The first project, titled Nanotechnology Center for Biomedical, Environmental and Sustainability Application, leans heavily on research teams dedicated to design new Nanotechnology platforms to address biomedical and environmental challenges and simultaneously trains a new generation of nanoengineers and nanoscientists throughout the educational echelon starting from public intermediate schools through doctoral programs. The second project, entitled Ecosystem to Expand Capabilities and Opportunities for STEM-Scholars (EECOS), developed an integrated framework that provides support to 62 low-income, talented, STEM students who were severely affected by Hurricane María and 2019-2020 earthquakes (58 undergraduate and 4 graduate). The project provided participants with financial, academic, socio-emotional, and career motivation support needed to complete their programs. The third project, Program for Engineering Access, Retention, and LIATS Success (PEARLS) addresses college access and economic hardships of Low-Income Academically Talented Students (LIATS). It aims at increasing the retention and academic success of talented engineering students coming from economically disadvantaged families. The fourth project, Resilient Infrastructure and Sustainability Education – Undergraduate Program (RISE-UP), has developed an interdisciplinary curriculum to educate cadres of Hispanic students on infrastructure resilience to temper and to overcome the effects of such natural disasters. Three campuses of this institution system collaborate in this interdisciplinary undertaking. Participating students are pursuing undergraduate degrees in engineering, architecture, and surveying who take the entailed courses together and participate in co-curricular activities (both online and in-person through site visits). The new curricular endeavor prepares them to design infrastructure that can withstand the impact of natural events. The expect outcome is to form cohorts of graduates ready to take on real-life infrastructure failures caused by disasters and provide them with an edge in their future professions. The present work provides a range of scalable and portable strategies that universities with underrepresented minorities in STEM programs could deploy to address the immediate and continued needs of students affected by natural disasters to secure academic success. These strategies can contribute to the development of professionals with the skills and experience to deal with severe circumstances such as those effected by natural disasters as well as the preparation to solve infrastructure challenges. 
    more » « less
  5. Open Source Software (OSS) is a major component of our digital infrastructure, yet more than 80% of such projects fail. Seeking less uncertainty, many OSS projects join established software communi- ties, e.g., the Apache Software Foundation (ASF), with established rules and community support to guide projects toward sustainabil- ity. In their nascent stage, ASF projects are incubated in the ASF incubator (ASFI), which provides systematic mentorship toward long-term sustainability. Projects in ASFI eventually conclude their incubation by either graduating, if successful, or retiring, if not. Time-stamped traces of developer activities are publicly avail- able from ASF, and can be used for monitoring project trajectories toward sustainability. Here we present a web app dashboard tool, APEX, that allows internal and external stakeholders to monitor and explore ASFI project sustainability trajectories, including social and technical networks. 
    more » « less