skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Using Ground‐Penetrating Radar to Infer Ice Wedge Characteristics Proximal to Water Tracks
Abstract Massive ground ice in Arctic regions underlain using continuous permafrost influences hydrologic processes, leading to ground subsidence and the release of carbon dioxide and methane into the atmosphere. The relation of massive ground ice such as ice wedges to water tracks and seasonally saturated hydrologic pathways remains uncertain. Here, we examine the location of ice wedges along a water track on the North Slope of Alaska using Ground‐Penetrating Radar (GPR) surveys, in situ measurements, soil cores, and forward modeling. Of nine unique GPR surveys collected in the summers of 2022 and 2023, seven exhibit distinctive “X”‐shaped reflections above columnar reflectors that are spatially correlated with water track margins. Forward modeling of plausible geometries suggests that ice wedges produce reflection patterns most similar to the reflections observed in our GPR profiles. Additionally, a large magnitude (∼71 mm) rain event on 8 July 2023 led to a ground collapse that exposed four ice wedges on the margin of the studied water track, ∼100 m downstream of our GPR surveys. Together, this suggests that GPR is a viable method for identifying the location of ice wedges as air temperatures in the Arctic continue to increase, we expect that ice wedges may thaw, destabilizing water tracks and causing ground collapse and expansion of thermo‐erosional gullies. This ground collapse will increase greenhouse gas emissions and threaten the Arctic infrastructure. Future geophysical analysis of upland Arctic hillslopes should include additional water tracks to better characterize potential heterogeneity in permafrost vulnerability across the warming Arctic.  more » « less
Award ID(s):
2102342
PAR ID:
10564692
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Earth Surface
Volume:
130
Issue:
1
ISSN:
2169-9003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This dataset documents the occurrence, distribution, and characteristics of cryptic ice wedge networks in the Yukon-Kuskokwim Delta (YKD), Alaska. The dataset is derived from remote sensing analyses, field-based permafrost coring, ground-penetrating radar (GPR) surveys, and stable water isotope analyses. High-resolution aerial orthoimagery from 2018 enabled the identification of ~50 linear kilometers (km) of ice wedge trough networks within a 60 square kilometers (km²) study area near Bethel, Alaska, revealing ice wedge networks previously undocumented in the region. Fieldwork in 2023 and 2024 confirmed the presence of ice wedges up to 1.5 meter (m) wide and 2.5 m tall, with wedge tops averaging 0.9 m below the surface. GPR transects identified additional ice wedges beyond those visible in imagery, suggesting that remote sensing analyses may underestimate their true abundance. Coring of polygon centers revealed a suite of late-Quaternary deposits, including early Holocene peat, ice-rich late-Pleistocene permafrost (reworked Yedoma), charcoal layers indicating past tundra fires, and the Aniakchak CFE II tephra (~3,600 calendar years before present [cal yrs BP]). Stable water isotope analyses of wedge ice (mean δ¹⁸O = -15.7 ‰, δ²H = -113.1 ‰) indicate relatively enriched values compared to other Holocene ice wedges in Alaska, reflecting the region's warm maritime climate influence. Expanding the mapping analysis across the YKD using very high-resolution satellite imagery, we found that 95 % of observed ice wedge networks occur at elevations between 4 and 80 meters above sea level (m asl), predominantly within tundra vegetation classes. These areas, covering ~32 % of the YKD tundra region, may contain additional ice wedges, peat deposits, and relict Yedoma. This dataset provides a new framework for understanding the spatial distribution and environmental controls on ice wedge development in warm permafrost regions, with implications for permafrost resilience, climate change vulnerability, and land use planning in the YKD. 
    more » « less
  2. Ice-wedge polygon (IWP) is a landform found in landscapes underlain by permafrost. IWPs form due to the development of ice wedges, where each IWP is bounded by ice wedges. Ice wedges form due to repeated cracking of the soil during winter and by snowmelt water infiltrating into the cracks and freezing. Repeated over thousands of years, the process results in ice wedges several 10s of feet deep. The melting of the top of the ice wedge results in ground subsidence and depending how extensive the thaw is across the landscape, new ponds or lateral drainage channels form. This data collection supported an assessment of the length of the ice wedge network in the Barnard River watershed (10,540 km2), Banks Island, Canada. The data collection is derived from the pan-Arctic map of ice-wedge polygons (Witharana et al. 2023, Ice-wedge polygon detection in satellite imagery from pan-Arctic regions, Permafrost Discovery Gateway, 2001-2021. Arctic Data Center. doi:10.18739/A2KW57K57), which used Maxar satellite imagery from 2010-2020 for Banks Island. Two types of datasets are included: (1) Polyline shapefile of mapped ice wedge centerlines. This dataset was produced with an approach adopted from Ulrich, Mathias, et al. "Quantifying wedge‐ice volumes in Yedoma and thermokarst basin deposits." Permafrost and Periglacial Processes 25.3 (2014): 151-161. A buffer that represents widths at the top of ice wedges is created around each IWP. A buffer width of 5 meters was chosen, since this allowed buffers of adjacent polygons to overlap. These buffers are then skeletonized in order to trace their centerlines, which ultimately represents the network of ice-wedges that form the IWPs in a landscape. (2) Polygon shapefile of IWP coverage (as percentage of land cover within 1 kilometer (km) x 1 km rectangular grid cells) across the 10,540 km2 Bernard River Watershed, Banks Island, Canada. Code for ice-wedge centerline extraction can be found at https://github.com/PermafrostDiscoveryGateway/IW-Network-Extraction. This data collection accompanies the manuscript published in Nature Water (Liljedahl, A.K., Witharana, C., and Manos, E., 2024. The Capillaries of the Arctic Tundra. Nature Water, doi:10.1038/s44221-024-00276-9) and the geospatial data is available to view in the Permafrost Discovery Gateway. 
    more » « less
  3. ABSTRACT The Yukon‐Kuskokwim Delta (YKD), covering ~75,000 km2of Alaska's discontinuous permafrost zone, has a historic (1902–2023) mean annual air temperature of ~−1°C and was previously thought to lack ice wedge networks. However, our recent investigations near Bethel, Alaska, revealed numerous near‐surface ice wedges. Using 20 cm resolution aerial orthoimagery from 2018, we identified ~50 linear km of ice wedge troughs in a 60 km2study area. Fieldwork in 2023 and 2024 confirmed ice wedges up to ~1.5 m wide and ~2.5 m in vertical extent, situated on average 0.9 m below the tundra surface (n = 29). Ground‐penetrating radar (GPR) detected additional ice wedges beyond those visible in the remote sensing imagery, suggesting an underestimation of their true abundance. Coring of polygonal centers revealed late‐Quaternary deposits, including thick early Holocene peat, late‐Pleistocene ice‐rich silts (reworked Yedoma), charcoal layers from tundra fires, and the Aniakchak CFE II tephra (~3600 cal yrs BP). Stable water isotopes from Bethel's wedge ice (mean δ18O = −15.7 ‰, δ2H = −113.1 ‰) indicate a relatively enriched signature compared to other Holocene ice wedges in Alaska, likely due to warmer temperatures and maritime influences. Expanding our mapping across the YKD using high‐resolution satellite imagery from 2012 to 2024, we estimate that the Holocene ice wedge zone encompasses ~30% of the YKD tundra region. Our findings demonstrate that ice wedge networks are more widespread across the YKD than previously recognized, emphasizing both the resilience and vulnerability of the region's warm, ice‐rich permafrost. These insights are crucial for understanding permafrost responses to climate change and assessing agricultural potential and development in the region. 
    more » « less
  4. Much of the Arctic tundra is underlain by a network of ice wedges that formed during millennia of repeated frost cracking on cold winter days and later infilling of snowmelt water. Growing ice wedges push the soil upwards, forming connected ridges on the ground surface and the ubiquitous ice-wedge polygon tundra. Melting of the top of the ice wedge causes the ground surface to collapse with the rims transforming into snow- and water-collecting troughs — a phenomenon observed at multiple sites across the Arctic tundra in a decade or less. Continued melt establishes a new drainage network only a metre or two wide and less than a half-metre deep, where a doubling of runoff and reduced surface water storage is possible without changes in precipitation. Across the Arctic, lakes are disappearing, while precipitation and river runoff are increasing. So far, the sub-metre microtopographical changes have not entered the scientific analyses encompassing regional and pan-Arctic hydrology. The data and technology are now here to quantify the network of ice wedges across large regions and, though individually small, the ice wedges add up to large numbers. What at first may appear as contradicting hydrological change (for example, shrinking lakes despite increasing precipitation) could be explained by a sudden evolution of the stream network where the new channels are narrow but bountiful: the capillaries of the Arctic tundra hydrological system. 
    more » « less
  5. Since the discovery of frozen megafauna carcasses in Northern Siberia and Alaska in the early 1800s, the Yedoma phenomenon has attracted many Arctic explorers and scientists. Exposed along coastal and riverbank bluffs, Yedoma often appears as large masses of ice with some inclusions of sediment. The ground ice particularly mystified geologists and geographers, and they considered sediment within Yedoma exposures to be a secondary and unimportant component. Numerous scientists around the world tried to explain the origin of Yedoma for decades, even though some of them had never seen Yedoma in the field. The origin of massive ice in Yedoma has been attributed to buried surface ice (glaciers, snow, lake ice, and icings), intrusive ice (open system pingo), and finally to ice wedges. Proponents of the last hypothesis found it difficult to explain a vertical extent of ice wedges, which in some cases exceeds 40 m. It took over 150 years of intense debates to understand the process of ice-wedge formation occurring simultaneously (syngenetically) with soil deposition and permafrost aggregation. This understanding was based on observations of the contemporary formation of syngenetic permafrost with ice wedges on the floodplains of Arctic rivers. It initially was concluded that Yedoma was a floodplain deposit, and it took several decades of debates to understand that Yedoma is of polygenetic origin. In this paper, we discuss the history of Yedoma studies from the early 19th century until the 1980s—the period when the main hypotheses of Yedoma origin were debated and developed. 
    more » « less