This dataset documents the occurrence, distribution, and characteristics of cryptic ice wedge networks in the Yukon-Kuskokwim Delta (YKD), Alaska. The dataset is derived from remote sensing analyses, field-based permafrost coring, ground-penetrating radar (GPR) surveys, and stable water isotope analyses. High-resolution aerial orthoimagery from 2018 enabled the identification of ~50 linear kilometers (km) of ice wedge trough networks within a 60 square kilometers (km²) study area near Bethel, Alaska, revealing ice wedge networks previously undocumented in the region. Fieldwork in 2023 and 2024 confirmed the presence of ice wedges up to 1.5 meter (m) wide and 2.5 m tall, with wedge tops averaging 0.9 m below the surface. GPR transects identified additional ice wedges beyond those visible in imagery, suggesting that remote sensing analyses may underestimate their true abundance. Coring of polygon centers revealed a suite of late-Quaternary deposits, including early Holocene peat, ice-rich late-Pleistocene permafrost (reworked Yedoma), charcoal layers indicating past tundra fires, and the Aniakchak CFE II tephra (~3,600 calendar years before present [cal yrs BP]). Stable water isotope analyses of wedge ice (mean δ¹⁸O = -15.7 ‰, δ²H = -113.1 ‰) indicate relatively enriched values compared to other Holocene ice wedges in Alaska, reflecting the region's warm maritime climate influence. Expanding the mapping analysis across the YKD using very high-resolution satellite imagery, we found that 95 % of observed ice wedge networks occur at elevations between 4 and 80 meters above sea level (m asl), predominantly within tundra vegetation classes. These areas, covering ~32 % of the YKD tundra region, may contain additional ice wedges, peat deposits, and relict Yedoma. This dataset provides a new framework for understanding the spatial distribution and environmental controls on ice wedge development in warm permafrost regions, with implications for permafrost resilience, climate change vulnerability, and land use planning in the YKD.
more »
« less
Using Ground‐Penetrating Radar to Infer Ice Wedge Characteristics Proximal to Water Tracks
Abstract Massive ground ice in Arctic regions underlain using continuous permafrost influences hydrologic processes, leading to ground subsidence and the release of carbon dioxide and methane into the atmosphere. The relation of massive ground ice such as ice wedges to water tracks and seasonally saturated hydrologic pathways remains uncertain. Here, we examine the location of ice wedges along a water track on the North Slope of Alaska using Ground‐Penetrating Radar (GPR) surveys, in situ measurements, soil cores, and forward modeling. Of nine unique GPR surveys collected in the summers of 2022 and 2023, seven exhibit distinctive “X”‐shaped reflections above columnar reflectors that are spatially correlated with water track margins. Forward modeling of plausible geometries suggests that ice wedges produce reflection patterns most similar to the reflections observed in our GPR profiles. Additionally, a large magnitude (∼71 mm) rain event on 8 July 2023 led to a ground collapse that exposed four ice wedges on the margin of the studied water track, ∼100 m downstream of our GPR surveys. Together, this suggests that GPR is a viable method for identifying the location of ice wedges as air temperatures in the Arctic continue to increase, we expect that ice wedges may thaw, destabilizing water tracks and causing ground collapse and expansion of thermo‐erosional gullies. This ground collapse will increase greenhouse gas emissions and threaten the Arctic infrastructure. Future geophysical analysis of upland Arctic hillslopes should include additional water tracks to better characterize potential heterogeneity in permafrost vulnerability across the warming Arctic.
more »
« less
- PAR ID:
- 10564692
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Earth Surface
- Volume:
- 130
- Issue:
- 1
- ISSN:
- 2169-9003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Arctic is experiencing accelerated warming at up to four times the rate of temperate regions, driving permafrost thawing and ground ice melting, which, in turn lead to coastal bluff failure and accelerated erosion. The primary mechanisms behind Arctic coastal bluff failures include the formation of thermoerosional niches at the bluff’s toe and warming-induced reductions in ground strength, making Arctic coastal bluff failure a complex thermal-mechanical coupling process. Most existing studies have focused on coastal bluff failures in temperate regions, but the unique failure mechanism in the Arctic remain underexplored. This study addresses this gap by developing a thermalmechanical coupling model to study the failure mechanism of a permafrost bluff failure that occurred in 2023–2024 in Utqia˙gvik, Alaska. The model incorporates pore ice phase change, thaw-induced reductions in permafrost stiffness and strength, and the effects of thermoerosional niches, cracks, and ice wedges. Stability analysis is conducted via the local factor of safety (LFS) method to account for spatial variations in permafrost strength and stiffness. Ground-penetrating radar (GPR) data from the August 2024 site survey were employed to characterize site conditions, and ground temperature data were used to validate the model. The results revealed two primary failure zones: one near the ground surface and another at the bluff’s toe. The total area of these two failure zones expanded with ongoing thaw. Besides, the results indicated that the increase in thaw thickness, the growth in niche length, and the presence of cracks exacerbate bluff instability, and bluff failure is likely to initiate along the ice wedge–permafrost interface.more » « less
-
Near‐Surface Drying of a Continuous Permafrost Hillslope With Water Tracks Following Ground CollapseIncreasing air temperatures in the Arctic cause permafrost to thaw, releasing carbon dioxide and methane into the atmosphere. Carbon in thawing permafrost is released approximately three times more readily when soils are unsaturated versus saturated. Therefore, understanding if the Arctic is wetting or drying as permafrost thaws is crucial to predicting soil carbon emissions. In upland permafrost regions, near‐surface soil moisture is influenced by unchannelized curvilinear zones of enhanced saturation known as water tracks. The ground underneath water tracks can collapse into thermoerosional gullies, altering their thaw depth and seasonal saturation. Water tracks and thermoerosional gullies frequently occur together on upland hillslopes but exhibit heterogeneous saturation dynamics. Thus, understanding saturation states in water tracks and gullies is crucial to predicting soil carbon emissions. In this study, we quantify saturation across water tracks and a gully and examine changes in near‐surface saturation metrics over time by leveraging ~30 years of meteorological data and remotely sensed wetness indices from Landsat (1994–2023) and PlanetScope (2017–2023) imagery for a permafrost hillslope on the North Slope of Alaska, USA. Results suggest that the studied water tracks are drying following the ground collapse event, decreasing the overall saturated area proximal to the collapse, but that the water tracks still have relatively high mean Normalised Difference Water Index (NDWI) values for all rainfall magnitudes. Given the importance of soil saturation for predicting carbon emissions, the results of this work may provide tools for improving estimates of carbon release from thawing continuous permafrost hillslopes.more » « less
-
Abstract. Permafrost degradation in Arctic lowlands is a critical geomorphic process, increasingly driven by climate warming and infrastructure development. This study applies an integrated geophysical and surveying approach – Electrical Resistivity Tomography (ERT), Ground Penetrating Radar (GPR), and thaw probing – to characterize near-surface permafrost variability across four land use types in Utqiaġvik, Alaska: gravel road, snow fence, residential building and undisturbed tundra. Results reveal pronounced heterogeneity in thaw depths (0.2 to >1 m) and ice content, shaped by both natural features such as ice wedges and frost heave and anthropogenic disturbances. Roads and snow fences altered surface drainage and snow accumulation, promoting differential thaw, deeper active layers, and localized ground deformation. Buildings in permafrost regions alter the local thermal regime through multiple interacting factors – for example, solar radiation, thermal leakage, snow cover dynamics, and surface disturbance – among others. ERT identified high-resistivity zones (>1,000 Ω·m) interpreted as ice-rich permafrost and low-resistivity features (<5 Ω·m) likely associated with cryopegs or thaw zones. GPR delineated subsurface stratigraphy and supported interpretation of ice-rich layers and permafrost features. These findings underscore the strong spatial coupling between surface infrastructure and subsurface thermal and hydrological regimes in ice-rich permafrost. Geophysical methods revealed subsurface features and thaw depth variations across different land use types in Utqiaġvik, highlighting how infrastructure alters permafrost conditions. These findings support localized assessment of ground stability in Arctic environments.more » « less
-
Ice-wedge polygon (IWP) is a landform found in landscapes underlain by permafrost. IWPs form due to the development of ice wedges, where each IWP is bounded by ice wedges. Ice wedges form due to repeated cracking of the soil during winter and by snowmelt water infiltrating into the cracks and freezing. Repeated over thousands of years, the process results in ice wedges several 10s of feet deep. The melting of the top of the ice wedge results in ground subsidence and depending how extensive the thaw is across the landscape, new ponds or lateral drainage channels form. This data collection supported an assessment of the length of the ice wedge network in the Barnard River watershed (10,540 km2), Banks Island, Canada. The data collection is derived from the pan-Arctic map of ice-wedge polygons (Witharana et al. 2023, Ice-wedge polygon detection in satellite imagery from pan-Arctic regions, Permafrost Discovery Gateway, 2001-2021. Arctic Data Center. doi:10.18739/A2KW57K57), which used Maxar satellite imagery from 2010-2020 for Banks Island. Two types of datasets are included: (1) Polyline shapefile of mapped ice wedge centerlines. This dataset was produced with an approach adopted from Ulrich, Mathias, et al. "Quantifying wedge‐ice volumes in Yedoma and thermokarst basin deposits." Permafrost and Periglacial Processes 25.3 (2014): 151-161. A buffer that represents widths at the top of ice wedges is created around each IWP. A buffer width of 5 meters was chosen, since this allowed buffers of adjacent polygons to overlap. These buffers are then skeletonized in order to trace their centerlines, which ultimately represents the network of ice-wedges that form the IWPs in a landscape. (2) Polygon shapefile of IWP coverage (as percentage of land cover within 1 kilometer (km) x 1 km rectangular grid cells) across the 10,540 km2 Bernard River Watershed, Banks Island, Canada. Code for ice-wedge centerline extraction can be found at https://github.com/PermafrostDiscoveryGateway/IW-Network-Extraction. This data collection accompanies the manuscript published in Nature Water (Liljedahl, A.K., Witharana, C., and Manos, E., 2024. The Capillaries of the Arctic Tundra. Nature Water, doi:10.1038/s44221-024-00276-9) and the geospatial data is available to view in the Permafrost Discovery Gateway.more » « less
An official website of the United States government
