Abstract We present the lifetime star formation histories (SFHs) for six ultrafaint dwarf (UFD;MV> − 7.0, ) satellite galaxies of M31 based on deep color–magnitude diagrams constructed from Hubble Space Telescope imaging. These are the first SFHs obtained from the oldest main-sequence turnoff of UFDs outside the halo of the Milky Way (MW). We find that five UFDs formed at least 50% of their stellar mass byz= 5 (12.6 Gyr ago), similar to known UFDs around the MW, but that 10%–40% of their stellar mass formed at later times. We uncover one remarkable UFD, Andxiii, which formed only 10% of its stellar mass byz= 5, and 75% in a rapid burst atz∼ 2–3, a result that is robust to choices of underlying stellar model and is consistent with its predominantly red horizontal branch. This “young” UFD is the first of its kind and indicates that not all UFDs are necessarily quenched by reionization, which is consistent with predictions from several cosmological simulations of faint dwarf galaxies. SFHs of the combined MW and M31 samples suggest reionization did not homogeneously quench UFDs. We find that the least-massive MW UFDs (M*(z= 5) ≲ 5 × 104M⊙) are likely quenched by reionization, whereas more-massive M31 UFDs (M*(z= 5) ≳ 105M⊙) may only have their star formation suppressed by reionization and quench at a later time. We discuss these findings in the context of the evolution and quenching of UFDs.
more »
« less
EDGE-INFERNO: Simulating Every Observable Star in Faint Dwarf Galaxies and Their Consequences for Resolved-star Photometric Surveys
Abstract Interpretation of data from faint dwarf galaxies is made challenging by observations limited to only the brightest stars. We present a major improvement to tackle this challenge by undertaking zoomed cosmological simulations that resolve the evolution of all individual stars more massive than 0.5M⊙, thereby explicitly tracking all observable stars for the Hubble time. For the first time, we predict observable color–magnitude diagrams and the spatial distribution of ≈100,000 stars within four faint (M⋆ ≈ 105M⊙) dwarf galaxies directly from their cosmological initial conditions. In all cases, simulations predict complex light profiles with multiple components, implying that typical observational measures of structural parameters can make the totalV-band magnitudes appear up to 0.5 mag dimmer compared to estimates from simulations. Furthermore, when only small (⪅100) numbers of stars are observable, shot noise from realizations of the color–magnitude diagram introduces uncertainties comparable to the population scatter in, e.g., the total magnitude, half-light radius, and mean iron abundance measurements. Estimating these uncertainties with fully self-consistent mass growth, star formation, and chemical enrichment histories paves the way for more robust interpretation of dwarf galaxy data.
more »
« less
- Award ID(s):
- 2307950
- PAR ID:
- 10564721
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 978
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 129
- Size(s):
- Article No. 129
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present uniformly measured stellar metallicities of 463 stars in 13 Milky Way (MW) ultra-faint dwarf galaxies (UFDs;MV= −7.1 to −0.8) using narrowband CaHK (F395N) imaging taken with the Hubble Space Telescope. This represents the largest homogeneous set of stellar metallicities in UFDs, increasing the number of metallicities in these 13 galaxies by a factor of 5 and doubling the number of metallicities in all known MW UFDs. We provide the first well-populated MDFs for all galaxies in this sample, with 〈[Fe/H]〉 ranging from −3.0 to −2.0 dex, andσ[Fe/H]ranging from 0.3–0.7 dex. We find a nearly constant [Fe/H]∼ −2.6 over 3 decades in luminosity (∼102–105L⊙), suggesting that the mass–metallicity relationship does not hold for such faint systems. We find a larger fraction (24%) of extremely metal-poor ([Fe/H]< −3) stars across our sample compared to the literature (14%), but note that uncertainties in our most metal-poor measurements make this an upper limit. We find 19% of stars in our UFD sample to be metal-rich ([Fe/H] > −2), consistent with the sum of literature spectroscopic studies. MW UFDs are known to be predominantly >13 Gyr old, meaning that all stars in our sample are truly ancient, unlike metal-poor stars in the MW, which have a range of possible ages. Our UFD metallicities are not well matched to known streams in the MW, providing further evidence that known MW substructures are not related to UFDs. We include a catalog of our stars to encourage community follow-up studies, including priority targets for ELT-era observations.more » « less
-
Abstract We report the discovery of Pavo, a faint (MV= −10.0), star-forming, irregular, and extremely isolated dwarf galaxy atD≈ 2 Mpc. Pavo was identified in Dark Energy Camera Legacy Survey imaging via a novel approach that combines low surface brightness galaxy search algorithms and machine-learning candidate classifications. Follow-up imaging with the Inamori-Magellan Areal Camera and Spectrograph on the 6.5 m Magellan Baade telescope revealed a color–magnitude diagram (CMD) with an old stellar population, in addition to the young population that dominates the integrated light, and a tip of the red giant branch distance estimate of Mpc. The blue population of stars in the CMD is consistent with the youngest stars having formed no later than 150 Myr ago. We also detected no Hαemission with SOAR telescope imaging, suggesting that we may be witnessing a temporary low in Pavo’s star formation. We estimate the total stellar mass of Pavo to be and measure an upper limit on its Higas mass of 1.0 × 106M⊙based on the HIPASS survey. Given these properties, Pavo’s closest analog is Leo P (D= 1.6 Mpc), previously the only known isolated, star-forming, Local Volume dwarf galaxy in this mass range. However, Pavo appears to be even more isolated, with no other known galaxy residing within over 600 kpc. As surveys and search techniques continue to improve, we anticipate an entire population of analogous objects being detected just outside the Local Group.more » « less
-
Abstract We report the first comprehensive census of the satellite dwarf galaxies around NGC 55 (2.1 Mpc) as a part of the DECam Local Volume Exploration DEEP (DELVE-DEEP) survey. NGC 55 is one of four isolated, Magellanic analogs in the Local Volume around which DELVE-DEEP aims to identify faint dwarfs and other substructures. We employ two complementary detection methods: one targets fully resolved dwarf galaxies by identifying them as stellar overdensities, while the other focuses on semiresolved dwarf galaxies, detecting them through shredded unresolved light components. As shown through extensive tests with injected galaxies, our search is sensitive to candidates down toMV ≲ −6.6 and surface brightnessμ ≲ 28.5 mag arcsec2, and ∼80% complete down toMV ≲ −7.8. We do not report any new confirmed satellites beyond two previously known systems, ESO 294–010 and NGC 55-dw1. We construct the satellite luminosity function of NGC 55 and find it to be consistent with the predictions from cosmological simulations. As one of the first complete luminosity functions for a Magellanic analog, our results provide a glimpse of the constraints on low-mass-host satellite populations that will be further explored by upcoming surveys, such as the Vera C. Rubin Observatory’s Legacy Survey of Space and Time.more » « less
-
Abstract We explore the characteristics of actively accreting massive black holes (MBHs) within dwarf galaxies in the Romulus25cosmological hydrodynamic simulation. We examine the MBH occupation fraction, X-ray active fractions, and active galactic nucleus (AGN) scaling relations within dwarf galaxies of stellar mass 108M⊙<Mstar< 1010M⊙out to redshiftz= 2. In the local universe, the MBH occupation fraction is consistent with observed constraints, dropping below unity atMstar< 3 × 1010M⊙,M200< 3 × 1011M⊙. Local dwarf AGN in Romulus25follow observed scaling relations between AGN X-ray luminosity, stellar mass, and star formation rate, though they exhibit slightly higher active fractions and number densities than comparable X-ray observations. Sincez= 2, the MBH occupation fraction has decreased, the population of dwarf AGN has become overall less luminous, and as a result the overall number density of dwarf AGN has diminished. We predict the existence of a large population of MBHs in the local universe with low X-ray luminosities and high contamination from X-ray binaries and the hot interstellar medium that are undetectable by current X-ray surveys. These hidden MBHs make up 76% of all MBHs in local dwarf galaxies and include many MBHs that are undermassive relative to their host galaxy’s stellar mass. Their detection relies on not only greater instrument sensitivity but also better modeling of X-ray contaminants or multiwavelength surveys. Our results indicate that dwarf AGN were substantially more active in the past, despite having low luminosity today, and that future deep X-ray surveys may uncover many hidden MBHs in dwarf galaxies out to at leastz= 2.more » « less
An official website of the United States government
