skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Analysis of Polarized Dust Emission Using Data from the First Flight of SPIDER
Abstract

Using data from the first flight ofSpiderand from the Planck High Frequency Instrument, we probe the properties of polarized emission from interstellar dust in theSpiderobserving region. Component-separation algorithms operating in both the spatial and harmonic domains are applied to probe their consistency and to quantify modeling errors associated with their assumptions. Analyses of diffuse Galactic dust emission spanning the fullSpiderregion demonstrate (i) a spectral energy distribution that is broadly consistent with a modified-blackbody (MBB) model with a spectral index ofβd= 1.45 ± 0.05 (1.47 ± 0.06) forE(B)-mode polarization, slightly lower than that reported by Planck for the full sky; (ii) an angular power spectrum broadly consistent with a power law; and (iii) no significant detection of line-of-sight polarization decorrelation. Tests of several modeling uncertainties find only a modest impact (∼10% inσr) onSpider’s sensitivity to the cosmological tensor-to-scalar ratio. The size of theSpiderregion further allows for a statistically meaningful analysis of the variation in foreground properties within it. Assuming a fixed dust temperatureTd= 19.6 K, an analysis of two independent subregions of that field results in inferred values ofβd= 1.52 ± 0.06 andβd= 1.09 ± 0.09, which are inconsistent at the 3.9σlevel. Furthermore, a joint analysis ofSpiderand Planck 217 and 353 GHz data within one subregion is inconsistent with a simple MBB at more than 3σ, assuming a common morphology of polarized dust emission over the full range of frequencies. This evidence of variation may inform the component-separation approaches of future cosmic microwave background polarization experiments.

 
more » « less
PAR ID:
10564728
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
978
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 130
Size(s):
Article No. 130
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present the first linear polarization measurements from the 2015 long-duration balloon flight ofSpider, which is an experiment that is designed to map the polarization of the cosmic microwave background (CMB) on degree angular scales. The results from these measurements include maps and angular power spectra from observations of 4.8% of the sky at 95 and 150 GHz, along with the results of internal consistency tests on these data. While the polarized CMB anisotropy from primordial density perturbations is the dominant signal in this region of sky, Galactic dust emission is also detected with high significance. Galactic synchrotron emission is found to be negligible in theSpiderbands. We employ two independent foreground-removal techniques to explore the sensitivity of the cosmological result to the assumptions made by each. The primary method uses a dust template derived fromPlanckdata to subtract the Galactic dust signal. A second approach, which constitutes a joint analysis ofSpiderandPlanckdata in the harmonic domain, assumes a modified-blackbody model for the spectral energy distribution of the dust with no constraint on its spatial morphology. Using a likelihood that jointly samples the template amplitude andrparameter space, we derive 95% upper limits on the primordial tensor-to-scalar ratio from Feldman–Cousins and Bayesian constructions, findingr< 0.11 andr< 0.19, respectively. Roughly half the uncertainty inrderives from noise associated with the template subtraction. New data at 280 GHz fromSpider’s second flight will complement thePlanckpolarization maps, providing powerful measurements of the polarized Galactic dust emission.

     
    more » « less
  2. Abstract

    We characterize Galactic dust filaments by correlating BICEP/Keck and Planck data with polarization templates based on neutral hydrogen (Hi) observations. Dust polarization is important for both our understanding of astrophysical processes in the interstellar medium (ISM) and the search for primordial gravitational waves in the cosmic microwave background (CMB). In the diffuse ISM, Hiis strongly correlated with the dust and partly organized into filaments that are aligned with the local magnetic field. We analyze the deep BICEP/Keck data at 95, 150, and 220 GHz, over the low-column-density region of sky where BICEP/Keck has set the best limits on primordial gravitational waves. We separate the Hiemission into distinct velocity components and detect dust polarization correlated with the local Galactic Hibut not with the Hiassociated with Magellanic Streami. We present a robust, multifrequency detection of polarized dust emission correlated with the filamentary Himorphology template down to 95 GHz. For assessing its utility for foreground cleaning, we report that the Himorphology template correlates inBmodes at a ∼10%–65% level over the multipole range 20 << 200 with the BICEP/Keck maps, which contain contributions from dust, CMB, and noise components. We measure the spectral index of the filamentary dust component spectral energy distribution to beβ= 1.54 ± 0.13. We find no evidence for decorrelation in this region between the filaments and the rest of the dust field or from the inclusion of dust associated with the intermediate velocity Hi. Finally, we explore the morphological parameter space in the Hi-based filamentary model.

     
    more » « less
  3. Abstract

    We present 870μm Atacama Large Millimeter/submillimeter Array polarization observations of thermal dust emission from the iconic, edge-on debris diskβPic. While the spatially resolved map does not exhibit detectable polarized dust emission, we detect polarization at the ∼3σlevel when averaging the emission across the entire disk. The corresponding polarization fraction isPfrac= 0.51% ± 0.19%. The polarization position angleχis aligned with the minor axis of the disk, as expected from models of dust grains aligned via radiative alignment torques (RAT) with respect to a toroidal magnetic field (B-RAT) or with respect to the anisotropy in the radiation field (k-RAT). When averaging the polarized emission across the outer versus inner thirds of the disk, we find that the polarization arises primarily from the SW third. We perform synthetic observations assuming grain alignment via bothk-RAT andB-RAT. Both models produce polarization fractions close to our observed value when the emission is averaged across the entire disk. When we average the models in the inner versus outer thirds of the disk, we find thatk-RAT is the likely mechanism producing the polarized emission inβPic. A comparison of timescales relevant to grain alignment also yields the same conclusion. For dust grains with realistic aspect ratios (i.e.,s> 1.1), our models imply low grain-alignment efficiencies.

     
    more » « less
  4. Abstract

    Observing in six frequency bands from 27 to 280 GHz over a large sky area, the Simons Observatory (SO) is poised to address many questions in Galactic astrophysics in addition to its principal cosmological goals. In this work, we provide quantitative forecasts on astrophysical parameters of interest for a range of Galactic science cases. We find that SO can: constrain the frequency spectrum of polarized dust emission at a level of Δβd≲ 0.01 and thus test models of dust composition that predict thatβdin polarization differs from that measured in total intensity; measure the correlation coefficient between polarized dust and synchrotron emission with a factor of two greater precision than current constraints; exclude the nonexistence of exo-Oort clouds at roughly 2.9σif the true fraction is similar to the detection rate of giant planets; map more than 850 molecular clouds with at least 50 independent polarization measurements at 1 pc resolution; detect or place upper limits on the polarization fractions of CO(2–1) emission and anomalous microwave emission at the 0.1% level in select regions; and measure the correlation coefficient between optical starlight polarization and microwave polarized dust emission in 1° patches for all lines of sight withNH≳ 2 × 1020cm−2. The goals and forecasts outlined here provide a roadmap for other microwave polarization experiments to expand their scientific scope via Milky Way astrophysics.37

    A supplement describing author contributions to this paper can be found athttps://simonsobservatory.org/wp-content/uploads/2022/02/SO_GS_Contributions.pdf.

     
    more » « less
  5. Abstract

    Utilizing Planck polarized dust emission maps at 353 GHz and large-area maps of the neutral hydrogen (Hi) cold neutral medium (CNM) fraction (fCNM), we investigate the relationship between dust polarization fraction (p353) andfCNMin the diffuse high latitude (b>30°) sky. We find that the correlation betweenp353andfCNMis qualitatively distinct from thep353–Hicolumn density (NHi) relationship. At low column densities (NHi< 4 × 1020cm−2) wherep353andNHiare uncorrelated, there is a strong positivep353fCNMcorrelation. We fit thep353fCNMcorrelation with data-driven models to constrain the degree of magnetic field disorder between phases along the line of sight. We argue that an increased magnetic field disorder in the warm neutral medium (WNM) relative to the CNM best explains the positivep353fCNMcorrelation in diffuse regions. Modeling the CNM-associated dust column as being maximally polarized, with a polarization fractionpCNM∼ 0.2, we find that the best-fit mean polarization fraction in the WNM-associated dust column is 0.22pCNM. The model further suggests that a significantfCNM-correlated fraction of the non-CNM column (an additional 18.4% of the Himass on average) is also more magnetically ordered, and we speculate that the additional column is associated with the unstable medium. Our results constitute a new large-area constraint on the average relative disorder of magnetic fields between the neutral phases of the interstellar medium, and are consistent with the physical picture of a more magnetically aligned CNM column forming out of a disordered WNM.

     
    more » « less