skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Solutes unmask differences in clustering versus phase separation of FET proteins
Phase separation and percolation contribute to phase transitions of multivalent macromolecules. Contributions of percolation are evident through the viscoelasticity of condensates and through the formation of heterogeneous distributions of nano- and mesoscale pre-percolation clusters in sub-saturated solutions. Here, we show that clusters formed in sub-saturated solutions of FET (FUS-EWSR1-TAF15) proteins are affected differently by glutamate versus chloride. These differences on the nanoscale, gleaned using a suite of methods deployed across a wide range of protein concentrations, are prevalent and can be unmasked even though the driving forces for phase separation remain unchanged in glutamate versus chloride. Strikingly, differences in anion-mediated interactions that drive clustering saturate on the micron-scale. Beyond this length scale the system separates into coexisting phases. Overall, we find that sequence-encoded interactions, mediated by solution components, make synergistic and distinct contributions to the formation of pre-percolation clusters in sub-saturated solutions, and to the driving forces for phase separation.  more » « less
Award ID(s):
2227268
PAR ID:
10564799
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We have investigated the structural evolution in solutions of the intrinsically disordered protein, α-synuclein, as a function of protein concentration and added salt concentration. Accounting for electrostatic and excluded volume interactions based on the protein sequence, our Langevin dynamics simulations reveal that α-synuclein molecules assemble into aggregates and percolated structures with a spontaneous selection of a dominant structure characteristic of microphase separation. This microphase assembly is mainly driven by electrostatic interactions between the residues in N-terminal and C-terminal of the protein molecules, and presence of salt loosens the compactness of the microstructures. We have quantified the features of the spontaneously formed microstructures using interchain radial distribution functions, and experimentally measurable inter-residue contact maps and static structure factors. Our results are in contrast to the commonly hypothesized mechanism of liquid–liquid phase separation (LLPS) for the formation of droplets in solutions of intrinsically disordered proteins, opening a new paradigm to understand the birth and structure of membraneless organelles. In general, construction of phase diagrams of intrinsically disordered proteins and other biomacromolecular systems needs to incorporate features of microphase separation into other mechanisms of macrophase separation and percolation. 
    more » « less
  2. Dendrite growth affects material systems across applications as diverse as lithium batteries, organic light emitting diodes, turbine blades, and biological sensors. Their unique crystal structure and ability to physically see growth make for a unique undergraduate laboratory experience. This experiment uses dendrite growth to explore the physical and chemical driving forces behind dendrite growth through a set of viscous, supersaturated solutions of varying ammonium chloride and gelatin concentrations. The degree of NH4Cl supersaturation determines growth rate, which can be mediated by the gelatin limiting diffusional mass transfer. This exercise was designed for a material science course, though it could easily be adapted to an inorganic or general chemistry course. Through this experiment, students are introduced to optical microscopy for quantitative analysis, a common, inexpensive analytical research tool rarely seen in the undergraduate laboratory. When chemical driving forces are dominant (low gelatin, high salt concentrations), a more ordered dendrite structure forms, with primary branches at 90° angles. Conversely, as diffusion becomes more dominant, a more disordered, denser dendrite structure is observed and the growth rate is slower. Students use both qualitative and quantitative observations to make connections between a fundamental laboratory exercise and critical materials processing techniques that rely on physicochemical driving forces. 
    more » « less
  3. null (Ed.)
    In mammals, HP1-mediated heterochromatin forms positionally and mechanically stable genomic domains even though the component HP1 paralogs, HP1α, HP1β, and HP1γ, display rapid on-off dynamics. Here, we investigate whether phase-separation by HP1 proteins can explain these biological observations. Using bulk and single-molecule methods, we show that, within phase-separated HP1α-DNA condensates, HP1α acts as a dynamic liquid, while compacted DNA molecules are constrained in local territories. These condensates are resistant to large forces yet can be readily dissolved by HP1β. Finally, we find that differences in each HP1 paralog’s DNA compaction and phase-separation properties arise from their respective disordered regions. Our findings suggest a generalizable model for genome organization in which a pool of weakly bound proteins collectively capitalize on the polymer properties of DNA to produce self-organizing domains that are simultaneously resistant to large forces at the mesoscale and susceptible to competition at the molecular scale. 
    more » « less
  4. Complex coacervation is a widely utilized technique for effecting phase separation, though predictive understanding of molecular-level details remains underdeveloped. Here, we couple coarse-grained Monte Carlo simulations with experimental efforts using a polypeptide-based model system to investigate how a comb-like architecture affects complex coacervation and coacervate stability. Specifically, the phase separation behavior of linear polycation-linear polyanion pairs was compared to that of comb polycation-linear polyanion and comb polycation-comb polyanion pairs. The comb architecture was found to mitigate cooperative interactions between oppositely charged polymers, as no discernible phase separation was observed for comb-comb pairs and complex coacervation of linear-linear pairs yielded stable coacervates at higher salt concentration than linear-comb pairs. This behavior was attributed to differences in counterion release by linear vs. comb polymers during polyeletrolyte complexation. Additionally, the comb polycation formed coacervates with both stereoregular poly( l -glutamate) and racemic poly( d , l -glutamate), whereas the linear polycation formed coacervates only with the racemic polyanion. In contrast, solid precipitates were obtained from mixtures of stereoregular poly( l -lysine) and poly( l -glutamate). Moreover, the formation of coacervates from cationic comb polymers incorporating up to ∼90% pendant zwitterionic groups demonstrated the potential for inclusion of comonomers to modulate the hydrophilicity and/or other properties of a coacervate-forming polymer. These results provide the first detailed investigation into the role of polymer architecture on complex coacervation using a chemically and architecturally well-defined model system, and highlight the need for additional research on this topic. 
    more » « less
  5. Abstract Inorganic salts usually demonstrate simple phasal behaviors in dilute aqueous solution mainly involving soluble (homogeneous) and insoluble (macrophase separation) scenarios. Herein, we report the discovery of complex phase behavior involving multiple phase transitions of clear solution – macrophase separation – gelation – solution – macrophase separation in the dilute aqueous solutions of a structurally well-defined molecular cluster [Mo7O24]6−macroanions with the continuous addition of Fe3+. No chemical reaction was involved. The transitions are closely related to the strong electrostatic interaction between [Mo7O24]6−and their Fe3+counterions, the counterion-mediated attraction and the consequent charge inversion, leading to the formation of linear/branched supramolecular structures, as confirmed by experimental results and molecular dynamics simulations. The rich phase behavior demonstrated by the inorganic cluster [Mo7O24]6−expands our understanding of nanoscale ions in solution. 
    more » « less