skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Designing Future Disaster Response Team Wearables from a Grounding in Practice
Wearable computers are poised to impact disaster response, so there is a need to determine the best interfaces to support situation awareness, decision support, and communication. We present a disaster response wearable design created for a mixed reality live-action role playing design competition, the Icehouse Challenge. The challenge, an independent event in which the authors were competitors, offers a simulation game environment in which teams compete to test wearable designs. In this game, players move through a simulated disaster space that requires team coordination and physical exertion to mitigate virtual hazards and stabilize virtual victims. Our design was grounded in disaster response and team coordination practice. We present our design process to develop wearable computer interfaces that integrate physiological and virtual environmental sensor data and display actionable information through a head-mounted display. We reflect on our observations from the live game, discuss challenges, opportunities, and design implications for future disaster response wearables to support collaboration.  more » « less
Award ID(s):
1651532 1619273
PAR ID:
10564904
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9781450354202
Page Range / eLocation ID:
1 to 6
Subject(s) / Keyword(s):
wearable head-mounted display mixed reality augmented reality LARP team coordination collaboration disaster response
Format(s):
Medium: X
Location:
Washington DC USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Autonomous robotic vehicles (i.e., drones) are potentially transformative for search and rescue (SAR). This paper works toward wearable interfaces, through which humans team with multiple drones. We introduce the Virtual Drone Search Game as a first step in creating a mixed reality simulation for humans to practice drone teaming and SAR techniques. Our goals are to (1) evaluate input modalities for the drones, derived from an iterative narrowing of the design space, (2) improve our mixed reality system for designing input modalities and training operators, and (3) collect data on how participants socially experience the virtual drones with which they work. In our study, 17 participants played the game with two input modalities (Gesture condition, Tap condition) in counterbalanced order. Results indicated that participants performed best with the Gesture condition. Participants found the multiple controls challenging, and future studies might include more training of the devices and game. Participants felt like a team with the drones and found them moderately agentic. In our future work, we will extend this testing to a more externally valid mixed reality game. 
    more » « less
  2. Effective human-human and human-autonomy teamwork is critical but often challenging to perfect. The challenge is particularly relevant in time-critical domains, such as healthcare and disaster response, where the time pressures can make coordination increasingly difficult to achieve and the consequences of imperfect coordination can be severe. To improve teamwork in these and other domains, we present TIC: an automated intervention approach for improving coordination between team members. Using BTIL, a multi-agent imitation learning algorithm, our approach first learns a generative model of team behavior from past task execution data. Next, it utilizes the learned generative model and team's task objective (shared reward) to algorithmically generate execution-time interventions. We evaluate our approach in synthetic multi-agent teaming scenarios, where team members make decentralized decisions without full observability of the environment. The experiments demonstrate that the automated interventions can successfully improve team performance and shed light on the design of autonomous agents for improving teamwork. 
    more » « less
  3. We present a game benchmark for testing human- swarm control algorithms and interfaces in a real-time, high- cadence scenario. Our benchmark consists of a swarm vs. swarm game in a virtual ROS environment in which the goal of the game is to “capture” all agents from the opposing swarm; the game’s high-cadence is a result of the capture rules, which cause agent team sizes to fluctuate rapidly. These rules require players to consider both the number of agents currently at their disposal and the behavior of their opponent’s swarm when they plan actions. We demonstrate our game benchmark with a default human-swarm control system that enables a player to interact with their swarm through a high-level touchscreen interface. The touchscreen interface transforms player gestures into swarm control commands via a low-level decentralized ergodic control framework. We compare our default human- swarm control system to a flocking-based control system, and discuss traits that are crucial for swarm control algorithms and interfaces operating in real-time, high-cadence scenarios like our game benchmark. Our game benchmark code is available on Github; more information can be found at https: //sites.google.com/view/swarm- game- benchmark. 
    more » « less
  4. Maps in video games have grown into complex interactive systems alongside video games themselves. What map systems have done and currently do have not been cataloged or evaluated. We trace the history of game map interfaces from their paper-based inspiration to their current smart phone-like appearance. Read-only map interfaces enable players to consume maps, which is sufficient for wayfinding. Game cartography interfaces enable players to persistently modify maps, expanding the range of activity to support planning and coordination. We employ thematic analysis on game cartography interfaces, contributing a near-exhaustive catalog of games featuring such interfaces, a set of properties to describe and design such interfaces, a collection of play activities that relate to cartography, and a framework to identify what properties promote the activities. We expect that designers will find the contributions enable them to promote desired play experiences through game map interface design. 
    more » « less
  5. We present a new technology-based paradigm to support embodied mathematics educational games, using wearable devices in the form of SmartPhones and SmartWatches for math learning, for full classes of students in formal in- school education settings. The Wearable Learning Games Engine is web based infrastructure that enables students to carry one mobile device per child, as they embark on math team-based activities that require physical engagement with the environment. These Wearable Tutors serve as guides and assistants while students manipulate, measure, estimate, discern, discard and find mathematical objects that satisfy specified constraints. Multi-player math games that use this infrastructure have yielded both cognitive and affective benefits. Beyond math game play, the Wearable Games Engine Authoring Tool enables students to create games themselves for other students to play; in this process, students engage in computational thinking and learn about finite-state machines. We present the infrastructure, games, and results for a series of experiments on both game play and game creation. 
    more » « less