skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electrochemical host–guest interactions in a disordered oligosilyl coordination polymer
In this work, we synthesize and study the charge transfer properties of a oligosilyl coordination polymer formed from zirconium clusters. Although the synthesized disordered polymer lacks long range order, spectroscopic and computational evidence suggest that the metal-ligand bond is formed, and the principle crystallographic reflections closely match those simulated from inter-node spacings matching that of the ligand. The porous polymer allows for the incorporation of guest molecules as demonstrated by the intercalation of tetracyanoquinodimethane (TCNQ). Charge transfer is predicted from DFT and experimentally observed by infrared spectroscopy, solid-state 29Si nuclear magnetic spectroscopy, and voltammetry.  more » « less
Award ID(s):
1945114 2237345
PAR ID:
10565030
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Royal Chemical Society
Date Published:
Journal Name:
Journal of Materials Chemistry C
Volume:
12
Issue:
40
ISSN:
2050-7526
Page Range / eLocation ID:
16515 to 16522
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The ligand-to-metal charge transfer (LMCT) transitions of [Re(dmpe)3]2+ (dmpe = bis-1,2-(dimethylphosphino)ethane) were interrogated using UV/Vis absorbance spectroscopy, photoluminescence spectroscopy, and time-dependent density functional theory. The solvent dependence of the lowest energy charge transfer transition was quantified; no solvatochromism was observed. TD-DFT calculations reveal the dominant LMCT transition is highly symmetric and delocalized involving all phopshine ligand donors in the charge transfer, providing an understanding for the absence of solvatochromism of [Re(dmpe)3]2+. 
    more » « less
  2. The effect of the energy valley on interlayer charge transfer in transition metal dichalcogenide (TMD) heterostructures is studied by transient absorption spectroscopy and density functional theory. First-principles calculations confirm that the Λmin valley in the conduction band of few-layer WSe2 evolves from above its K valley in the monolayer (1L) to below it in 4L. Heterostructure samples of 𝑛⁢L−WSe2/1⁢L−MoS2, where 𝑛=1,2,3, and 4, are obtained by mechanical exfoliation and dry transfer. Photoluminescence spectroscopy reveals a thickness-dependent WSe2 band structure and efficient interlayer charge transfer. Transient absorption measurements show that the electron transfer time from the Λmin valley of 4L WSe2 to the K valley of MoS2 is on the order of 30 ps. This process is much slower than the K-K charge transfer in 1L/1L TMD heterostructures. The momentum-indirect interlayer excitons formed after charge transfer have lifetimes >1 ns. 
    more » « less
  3. The excited-state dynamics of fac-Co(ppy)3, where ppy = 2-[2-(pyridyl)phenyl], are measured with femtosecond UV-Vis transient absorption spectroscopy. The initial state is confirmed with spectroelectrochemistry to have significant metal-to-ligand charge transfer (MLCT) character, unlike other Co complexes that generally have ligand-to-metal charge transfer or ligand-field transitions in this energy range. Ground-state recovery occurs in 8.65 ps in dichloromethane. Density functional theory (DFT) calculations show that the MLCT state undergoes Jahn-Teller distortion and converts to a 5-coordinate 3MC state in which one Co-N bond is broken. The results highlights a potential pitfall of heteroleptic-bidentate ligands when designing strong-field ligands for transition metal chromophores. 
    more » « less
  4. Future molecular microelectronics require the electronic conductivity of the device to be tunable without impairing the voltage control of the molecular electronic properties. This work reports the influence of an interface between a semiconducting polyaniline polymer or a polar poly-D-lysine molecular film and one of two valence tautomeric complexes, i.e. , [Co III (SQ)(Cat)(4-CN-py) 2 ] ↔ [Co II (SQ) 2 (4-CN-py) 2 ] and [Co III (SQ)(Cat)(3-tpp) 2 ] ↔ [Co II (SQ) 2 (3-tpp) 2 ]. The electronic transitions and orbitals are identified using X-ray photoemission, X-ray absorption, inverse photoemission, and optical absorption spectroscopy measurements that are guided by density functional theory. Except for slightly modified binding energies and shifted orbital levels, the choice of the underlying substrate layer has little effect on the electronic structure. A prominent unoccupied ligand-to-metal charge transfer state exists in [Co III (SQ)(Cat)(3-tpp) 2 ] ↔ [Co II (SQ) 2 (3-tpp) 2 ] that is virtually insensitive to the interface between the polymer and tautomeric complexes in the Co II high-spin state. 
    more » « less
  5. null (Ed.)
    A new electrically conducting 3D metal-organic framework (MOF) with a unique architecture was synthesized using 1,2,4,5-tetrakis-(4-carboxyphenyl)benzene (TCPB) a redox-active cis -dipyridyl-tetrathiafulvalene ( Z -DPTTF) ligand. While TCPB formed Zn 2 (COO) 4 secondary building units (SBUs), instead of connecting the Zn 2 -paddlewheel SBUs located in different planes and forming a traditional pillared paddlewheel MOF, the U-shaped Z -DPTTF ligands bridged the neighboring SBUs formed by the same TCPB ligand like a sine-curve along the b axis that created a new sine -MOF architecture. The pristine sine -MOF displayed an intrinsic electrical conductivity of 1 × 10 −8  S/m, which surged to 5 × 10 −7  S/m after I 2 doping due to partial oxidation of electron rich Z -DPTTF ligands that raised the charge-carrier concentration inside the framework. However, the conductivities of the pristine and I 2 -treated sine -MOFs were modest possibly because of large spatial distances between the ligands that prevented π-donor/acceptor charge-transfer interactions needed for effective through-space charge movement in 3D MOFs that lack through coordination-bond charge transport pathways. 
    more » « less