Abstract The Central High Atlas Mountains of Morocco have an extensive record of Lower Jurassic deposits from the Tethyan Ocean. In the Amellago region, Ziz Valley, and Dadès Valley several fossilized reef outcrops preserve benthic foraminifera spanning the Pliensbachian and Toarcian stages. This study analyzes benthic foraminiferal assemblage changes across the bi-phased extinctions at the Pliensbachian/Toarcian boundary and the Jenkyns Event (also referred to as the Toarcian Oceanic Anoxic Event). In Pliensbachian samples, assemblages with abundant Glomospira sp., Glomospirella sp., Siphovalvulina sp., Haurania deserta, Placopsilina sp., Mesoendothyra sp., and Everticyclammina praevirguliana are observed. Following both the Pliensbachian/Toarcian boundary event and the Jenkyns Event, benthic foraminiferal density, evenness, and species richness decreased, indicating these communities underwent ecologic stress; however, loss of diversity was most substantial between samples that pre-date and post-date the Jenkyns Event. Whereas the Pliensbachian/Toarcian boundary event coincides with the demise of the large benthic foraminifera Mesoendothyra sp. and Everticyclammina praevirguliana, the Jenkyns Event was detrimental for most clades of benthic foraminifera, including many small, resilient taxa. Based on the evidence provided, we suggest that the Pliensbachian/Toarcian boundary and the Jenkyns Event were distinct events, potentially caused by distinct environmental perturbations.
more »
« less
Combined benthic and stream edge sampling better represent macroinvertebrate assemblages than benthic sampling alone along an aridity gradient
Abstract Studies of stream macroinvertebrates traditionally use sampling methods that target benthic habitats. These methods could underestimate biodiversity if important assemblage components exist outside of the benthic zone. To test the efficacy of different sampling methods, we collected paired reach‐wide benthic and edge samples from up to 10 study reaches in nine basins spanning an aridity gradient across the United States. Edge sampling targeted riparian‐adjacent microhabitats not typically sampled, including submerged vegetation, roots, and overhanging banks. We compared observed richness, asymptotic richness, and assemblage dissimilarity between benthic samples alone and different combinations of benthic and edge samples to determine the magnitude of increased diversity and assemblage dissimilarity values with the addition of edge sampling. We also examined how differences in richness and assemblage composition varied across an aridity gradient. The addition of edge sampling significantly increased observed richness (median increase = 29%) and asymptotic richness (median increase = 173%). Similarly, median Bray–Curtis dissimilarity values increased by as much as 0.178 when benthic and edge samples were combined. Differences in richness metrics were generally higher in arid basins, but assemblage dissimilarity either increased or decreased across the aridity gradient depending on how benthic and edge samples were combined. Our results suggest that studies that do not sample stream edges may significantly underestimate reach diversity and misrepresent assemblage compositions, with effects that can vary across climates. We urge researchers to carefully consider sampling methods in field studies spanning climatic zones and the comparability of existing data sets when conducting data synthesis studies.
more »
« less
- PAR ID:
- 10565059
- Publisher / Repository:
- Association for the Sciences of Limnology and Oceanography
- Date Published:
- Journal Name:
- Limnology and Oceanography: Methods
- Volume:
- 22
- Issue:
- 4
- ISSN:
- 1541-5856
- Page Range / eLocation ID:
- 208 to 216
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Coral reefs experience numerous natural and anthropogenic environmental gradients that alter biophysical conditions and affect biodiversity. While many studies have focused on drivers of reef biodiversity using traditional diversity metrics (e.g., species richness, diversity, evenness), less is known about how environmental variability may influence functional diversity. In this study, we tested the impact of submarine groundwater discharge (SGD) on taxonomic and functional diversity metrics in Mo‘orea, French Polynesia. SGD is the expulsion of terrestrial fresh or recirculated seawater into marine environments and is associated with reduced temperatures, pH, and salinity and elevated nutrient levels. Using a regression approach along the SGD gradient, we found that taxon and functional-entity richness displayed unimodal relationships to SGD parameters, primarily nitrate + nitrite and phosphate variability, with peak richness at moderate SGD for stony coral and the full benthic community. Macroalgae showed this unimodal pattern for functional-entity but not taxonomic richness. Functional community composition (presence and abundance of functional entities) increased along the gradient, while taxonomic composition showed a nonlinear relationship to SGD-related parameters. SGD is a common feature of many coastal ecosystems globally and therefore may be more important to structuring benthic functional diversity than previously thought. Further, studying community shifts through a functional-trait lens may provide important insights into the roles of community functions on ecosystem processes and stability, leading to improved management strategies.more » « less
-
Abstract Biological assemblages in streams are influenced by hydrological dynamics, particularly in non‐perennial systems. Although there has been increasing attention on how drying impacts stream organisms, few studies have investigated how specific characteristics of drying and subsequent wetting transitions influence biotic responses via resistance and resilience traits.Here, we characterized how hydrologic metrics, including those quantifying drying and wetting transitions as well as dry and wet phases, alter diversity and composition of three aquatic assemblages in non‐perennial streams in southern California: benthic macroinvertebrates, soft‐bodied algae and diatoms.We found that flow duration prior to sampling was correlated with variation in macroinvertebrate and soft‐bodied algal assemblage composition. The composition and richness of diatom assemblages, however, were predominantly influenced by the drying start date prior to sampling. Contrary to other studies, the duration of the dry phase prior to sampling did not influence the composition or richness of any assemblage. Although our study was conducted within a region in which each assemblage experienced comparable environmental conditions, we found no single hydrologic metric that influenced all assemblages in the same way.The hot‐summer Mediterranean climate of southern California likely acts as a strong environmental filter, with taxa in this region relying on resistance and resilience adaptations to survive and recolonize non‐perennial streams following wetting. The different responses of algal and diatom assemblages to hydrologic metrics suggest greater resilience to drying and wetting events, particularly for primary producers.As drying and wetting patterns continue to change, understanding biodiversity responses to hydrologic metrics could inform management actions that enhance the ecological resilience of communities in non‐perennial streams. In particular, the creation and enhancement of flow regimes in which natural timing and duration of dry and wet phases sustain refuges that support community persistence in a changing environment.more » « less
-
Abstract Increases in species richness with habitat area (species–area relationship, or SAR) and increases in ecosystem function with species richness (biodiversity–ecosystem functioning, or BEF) are widely studied ecological patterns. Incorporating functional trait analysis into assemblage datasets may help clarify interpretations of SAR and BEF relationships in natural ecological systems. For example, life history theory can be used to make predictions about what species are most important in generating ecosystem function given a certain set of environmental conditions. We used quantitative assemblage data for freshwater mussels at nine sites in western Alabama, USA, to test for SAR and BEF relationships. At each site, we calculated species richness, mussel assemblage density, and two fundamental metrics of ecosystem function: biomass and secondary production. We also tested whether the proportional biomass and production contributions from species belonging to each of three life history strategies—opportunistic strategistsadapted to unstable or frequently disturbed habitats,periodic strategistsadapted to habitats subject to predictable large‐scale disturbances, andequilibrium strategistsadapted to stable habitats—varied longitudinally with stream drainage area, a proxy for habitat area. Species richness increased with stream size (SAR), and both biomass and production increased with species richness (BEF) and mussel density. There were few longitudinal changes in the proportional contributions of the different life history strategy classifications that we used, but the invasive clamCorbicula flumineacontributed proportionally more biomass and production at sites that had smaller drainage areas. This study provides further evidence for a clear longitudinal SAR in stream‐dwelling taxa. It also suggests BEF relationships for biomass and secondary production in natural assemblages but underscores the importance of assemblage density in BEF studies that use observational field data. Variation in proportional biomass and production contributions by different life history strategies was likely limited by the size of the stream size gradient in our study, as contributions were uniformly high for species with life history traits better adapted to stable and productive habitats such as mid‐sized rivers with low or predictable hydrologic disturbance frequencies. This highlights the need to understand how organisms' functional traits govern their relationships to the environment at different scales.more » « less
-
Biodiversity assessments are critical for setting conservation priorities, understanding ecosystem function and establishing a baseline to monitor change. Surveys of marine biodiversity that rely almost entirely on sampling adult organisms underestimate diversity because they tend to be limited to habitat types and individuals that can be easily surveyed. Many marine animals have planktonic larvae that can be sampled from the water column at shallow depths. This life stage often is overlooked in surveys but can be used to relatively rapidly document diversity, especially for the many species that are rare or live cryptically as adults. Using DNA barcode data from samples of nemertean worms collected in three biogeographical regions—Northeastern Pacific, the Caribbean Sea and Eastern Tropical Pacific—we found that most species were collected as either benthic adults or planktonic larvae but seldom in both stages. Randomization tests show that this deficit of operational taxonomic units collected as both adults and larvae is extremely unlikely if larvae and adults were drawn from the same pool of species. This effect persists even in well-studied faunas. These results suggest that sampling planktonic larvae offers access to a different subset of species and thus significantly increases estimates of biodiversity compared to sampling adults alone. Spanish abstract is available in the electronic supplementary material.more » « less