The nature of the interplay between fluctuations and quenched random disorder is a long-standing open problem, particularly in systems with a continuous order parameter. This lack of a full theoretical treatment has been underscored by recent advances in experiments on charge density wave materials. To address this problem, we formulate an exactly solvable model of a two-dimensional randomly pinned incommensurate charge density wave, and use the large-N technique to map out the phase diagram and order parameter correlations. Our approach captures the physics of the Berezinskii–Kosterlitz–Thouless phase transition in the clean limit at largeN. We pay particular attention to the roles of thermal fluctuations and quenched random field disorder in destroying long-range order, finding a novel crossover between weakly- and strongly-disordered regimes.
more »
« less
This content will become publicly available on October 21, 2025
Interplay of Quantum and Thermal Fluctuations in Two-Dimensional Randomly Pinned Charge Density Waves
The interplay between quantum and thermal fluctuations in the presence of quenched random disorder is a long-standing open theoretical problem which has been made more urgent by advances in modern experimental techniques. The fragility of charge density wave order to impurities makes this problem of particular interest in understanding a host of real materials, including the cuprate high-temperature superconductors. To address this question, we consider the quantum version of an exactly solvable classical model of two-dimensional randomly pinned incommensurate charge density waves first introduced by us in a recent work, and use the large-N technique to obtain the phase diagram and order parameter correlations. Our theory considers quantum and thermal fluctuations and disorder on equal footing by accounting for all effects non-perturbatively, which reveals a novel crossover between under-damped and over-damped dynamics of the fluctuations of the charge density wave order parameter.
more »
« less
- Award ID(s):
- 2225920
- PAR ID:
- 10565213
- Publisher / Repository:
- 2410.16375
- Date Published:
- Edition / Version:
- v1
- Format(s):
- Medium: X
- Institution:
- University of Illinois at Urbana-Champaign
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Charge density waves are emergent quantum states that spontaneously reduce crystal symmetry, drive metal-insulator transitions, and precede superconductivity. In low-dimensions, distinct quantum states arise, however, thermal fluctuations and external disorder destroy long-range order. Here we stabilize ordered two-dimensional (2D) charge density waves through endotaxial synthesis of confined monolayers of 1T-TaS2. Specifically, an ordered incommensurate charge density wave (oIC-CDW) is realized in 2D with dramatically enhanced amplitude and resistivity. By enhancing CDW order, the hexatic nature of charge density waves becomes observable. Upon heating via in-situ TEM, the CDW continuously melts in a reversible hexatic process wherein topological defects form in the charge density wave. From these results, new regimes of the CDW phase diagram for 1T-TaS2are derived and consistent with the predicted emergence of vestigial quantum order.more » « less
-
null (Ed.)Abstract The Higgs mechanism, i.e., spontaneous symmetry breaking of the quantum vacuum, is a cross-disciplinary principle, universal for understanding dark energy, antimatter and quantum materials, from superconductivity to magnetism. Unlike one-band superconductors (SCs), a conceptually distinct Higgs amplitude mode can arise in multi-band, unconventional superconductors via strong interband Coulomb interaction, but is yet to be accessed. Here we discover such hybrid Higgs mode and demonstrate its quantum control by light in iron-based high-temperature SCs. Using terahertz (THz) two-pulse coherent spectroscopy, we observe a tunable amplitude mode coherent oscillation of the complex order parameter from coupled lower and upper bands. The nonlinear dependence of the hybrid Higgs mode on the THz driving fields is distinct from any known SC results: we observe a large reversible modulation of resonance strength, yet with a persisting mode frequency. Together with quantum kinetic modeling of a hybrid Higgs mechanism, distinct from charge-density fluctuations and without invoking phonons or disorder, our result provides compelling evidence for a light-controlled coupling between the electron and hole amplitude modes assisted by strong interband quantum entanglement. Such light-control of Higgs hybridization can be extended to probe many-body entanglement and hidden symmetries in other complex systems.more » « less
-
Abstract Compelling evidence suggests distinct correlated electron behavior may exist only in clean 2D materials such as 1T-TaS 2 . Unfortunately, experiment and theory suggest that extrinsic disorder in free standing 2D layers disrupts correlation-driven quantum behavior. Here we demonstrate a route to realizing fragile 2D quantum states through endotaxial polytype engineering of van der Waals materials. The true isolation of 2D charge density waves (CDWs) between metallic layers stabilizes commensurate long-range order and lifts the coupling between neighboring CDW layers to restore mirror symmetries via interlayer CDW twinning. The twinned-commensurate charge density wave (tC-CDW) reported herein has a single metal–insulator phase transition at ~350 K as measured structurally and electronically. Fast in-situ transmission electron microscopy and scanned nanobeam diffraction map the formation of tC-CDWs. This work introduces endotaxial polytype engineering of van der Waals materials to access latent 2D ground states distinct from conventional 2D fabrication.more » « less
-
Topological defects are singularities in an ordered phase that can have a profound effect on phase transitions and serve as a window into the order parameter. Examples of topological defects include dislocations in charge density waves and vortices in a superconductor or pair density wave, where the latter is a condensate of Cooper pairs with finite momentum. Here we demonstrate the role of topological defects in the magnetic-field-induced disappearance of a charge density wave in the heavy-fermion superconductor UTe2. We reveal pairs of topological defects of the charge density wave with positive and negative phase winding. The pairs are directly correlated with zeros in the charge density wave amplitude and increase in number with increasing magnetic field. A magnetic field generates vortices of the superconducting and pair density wave orders that can create topological defects in the charge density wave and induce the experimentally observed melting of this charge order at the upper critical field. Our work reveals the important role of magnetic-field-generated topological defects in the melting of the charge density wave order parameter in UTe2 and provides support for the existence of a pair density wave order on the surface.more » « less