skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Birds and Their Extraordinary Sense of Smell
Smell is one of the five senses we use to experience the world. It allows humans and other animals to find their food, avoid danger, and even recognize family members. Animals detect smells with olfactory receptors, special proteins that sit on the surface of the nose cells. These interact with odor molecules (small particles that have a smell) and send signals to the brain so the animal can perceive the smell. We know mammals have hundreds of olfactory receptors and can detect tens of thousands of smells, but what about birds? For decades, many people thought that birds did not use smell in their daily lives, but recent studies have shown that birds respond to smell. We show that many birds have a large number of olfactory receptors similar to mammals, strengthening the case for smell playing an important role in the life of birds.  more » « less
Award ID(s):
2208965
PAR ID:
10565373
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers for Young Minds
Volume:
12
ISSN:
2296-6846
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Although smell influences many daily activities, researchers and practitioners have yet to thoroughly understand smells and the interactions involved in smell mixtures. We present work focused on artificially synthesizing odor mixtures, the evaluation techniques to measure the fidelity of such technologies, and the rich application scenarios that materialize with this capability. We highlight our system implementation and design considerations for an olfactory wearable for odor mixing. Then, we outline an approach to assess odor mixing behavior and efficacy, and finally, we discuss possible studies to contextualize the usefulness of our technology. 
    more » « less
  2. null; null; null (Ed.)
    Microservice Architecture (MSA) is rapidly taking over modern software engineering and becoming the predominant architecture of new cloud-based applications (apps). There are many advantages to using MSA, but there are many downsides to using a more complex architecture than a typical monolithic enterprise app. Beyond the normal bad coding practices and code-smells of a typical app, MSA specific code-smells are difficult to discover within a distributed app. There are many static code analysis tools for monolithic apps, but no tool exists to offer code-smell detection for MSA-based apps. This paper proposes a new approach to detect code smells in distributed apps based on MSA. We develop an open-source tool, MSANose, which can accurately detect up to eleven different types of MSA specific code smells. We demonstrate our tool through a case study on a benchmark MSA app and verify its accuracy. Our results show that it is possible to detect code-smells within MSA apps using bytecode and or source code analysis throughout the development or before deployment to production. 
    more » « less
  3. A mouse’s nose contains over 10 million receptor neurons divided into about 1,000 different types, which detect airborne chemicals – called odorants – that make up smells. Each odorant activates many different receptor types. And each receptor type responds to many different odorants. To identify a smell, the brain must therefore consider the overall pattern of activation across all receptor types. Individual receptor neurons in the mammalian nose live for about 30 days, before new cells replace them. The entire population of odorant receptor neurons turns over every few weeks, even in adults. Studies have shown that some types of these receptor neurons are used more often than others, depending on the species, and are therefore much more abundant. Moreover, the usage patterns of different receptor types can also change when individual animals are exposed to different smells. Teşileanu et al. set out to develop a computer model that can explain these observations. The results revealed that the nose adjusts its odorant receptor neurons to provide the brain with as much information as possible about typical smells in the environment. Because each smell consists of multiple odorants, each odorant is more likely to occur alongside certain others. For example, the odorants that make up the scent of a flower are more likely to occur together than alongside the odorants in diesel. The nose takes advantage of these relationships by adjusting the abundance of the receptor types in line with them. Teşileanu et al. show that exposure to odorants leads to reproducible increases or decreases in different receptor types, depending on what would provide the brain with most information. The number of odorant receptor neurons in the human nose decreases with time. The current findings could help scientists understand how these changes affect our sense of smell as we age. This will require collaboration between experimental and theoretical scientists to measure the odors typical of our environments, and work out how our odorant receptor neurons detect them. 
    more » « less
  4. null (Ed.)
    Microservice Architecture (MSA) is becoming the predominant direction of new cloud-based applications. There are many advantages to using microservices, but also downsides to using a more complex architecture than a typical monolithic enterprise application. Beyond the normal poor coding practices and code smells of a typical application, microservice-specific code smells are difficult to discover within a distributed application setup. There are many static code analysis tools for monolithic applications, but tools to offer code-smell detection for microservice-based applications are lacking. This paper proposes a new approach to detect code smells in distributed applications based on microservices. We develop an MSANose tool to detect up to eleven different microservice specific code smells and share it as open-source. We demonstrate our tool through a case study on two robust benchmark microservice applications and verify its accuracy. Our results show that it is possible to detect code smells within microservice applications using bytecode and/or source code analysis throughout the development process or even before its deployment to production. 
    more » « less
  5. null (Ed.)
    Abstract The sense of smell is an essential modality for many species, in particular nocturnal and crepuscular mammals, to gather information about their environment. Olfactory cues provide information over a large range of distances, allowing behaviours ranging from simple detection and recognition of objects, to tracking trails and navigating using odour plumes from afar. In this review, we discuss the features of the natural olfactory environment and provide a brief overview of how odour information can be sampled and might be represented and processed by the mammalian olfactory system. Finally, we discuss recent behavioural approaches that address how mammals extract spatial information from the environment in three different contexts: odour trail tracking, odour plume tracking and, more general, olfactory-guided navigation. Recent technological developments have seen the spatiotemporal aspect of mammalian olfaction gain significant attention, and we discuss both the promising aspects of rapidly developing paradigms and stimulus control technologies as well as their limitations. We conclude that, while still in its beginnings, research on the odour environment offers an entry point into understanding the mechanisms how mammals extract information about space. 
    more » « less