skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Updating the First CHIME/FRB Catalog of Fast Radio Bursts with Baseband Data
Abstract In 2021, a catalog of 536 fast radio bursts (FRBs) detected with the Canadian Hydrogen Intensity Mapping Experiment (CHIME) radio telescope was released by the CHIME/FRB Collaboration. This large collection of bursts, observed with a single instrument and uniform selection effects, has advanced our understanding of the FRB population. Here we update the results for 140 of these FRBs for which channelized raw voltage (“baseband”) data are available. With the voltages measured by the telescope’s antennas, it is possible to maximize the telescope sensitivity in any direction within the primary beam, an operation called “beamforming.” This allows us to increase the signal-to-noise ratios of the bursts and to localize them to subarcminute precision. The improved localizations are also used to correct the beam response of the instrument and to measure fluxes and fluences with an ∼10% uncertainty. Additionally, the time resolution is increased by 3 orders of magnitude relative to that in the first CHIME/FRB catalog, and, applying coherent dedispersion, burst morphologies can be studied in detail. Polarization information is also available for the full sample of 140 FRBs, providing an unprecedented data set to study the polarization properties of the population. We release the baseband data beamformed to the most probable position of each FRB. These data are analyzed in detail in a series of accompanying papers.  more » « less
Award ID(s):
2018490
PAR ID:
10565378
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Corporate Creator(s):
Publisher / Repository:
American Astronomical Society
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
969
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
145
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present the host galaxies of four apparently nonrepeating fast radio bursts (FRBs), FRB 20181223C, FRB 20190418A, FRB 20191220A, and FRB 20190425A, reported in the first Canadian Hydrogen Intensity Mapping Experiment (CHIME/FRB) catalog. Our selection of these FRBs is based on a planned hypothesis testing framework where we search all CHIME/FRB Catalog-1 events that have low extragalactic dispersion measure (<100 pc cm−3), with high Galactic latitude (∣b∣ > 10°) and saved baseband data. We associate the selected FRBs with galaxies with moderate to high star formation rates located at redshifts between 0.027 and 0.071. We also search for possible multimessenger counterparts, including persistent compact radio and gravitational-wave sources, and find none. Utilizing the four FRB hosts from this study, along with the hosts of 14 published local Universe FRBs (z< 0.1) with robust host association, we conduct an FRB host demographics analysis. We find all 18 local Universe FRB hosts in our sample to be spirals (or late-type galaxies), including the host of FRB 20220509G, which was previously reported to be elliptical. Using this observation, we scrutinize proposed FRB source formation channels and argue that core-collapse supernovae are likely the dominant channel to form FRB sources. Moreover, we infer no significant difference in the host properties of repeating and apparently nonrepeating FRBs in our local Universe FRB host sample. Finally, we find the burst rates of these four apparently nonrepeating FRBs to be consistent with those of the sample of localized repeating FRBs observed by CHIME/FRB. Therefore, we encourage further monitoring of these FRBs with more sensitive radio telescopes. 
    more » « less
  2. Abstract We present the first catalog of fast radio burst (FRB) host galaxies from CHIME/FRB Outriggers, selected uniformly in the radio and the optical by localizing 81 new bursts to 2″ × ∼ 60″ accuracy using CHIME and the k’niʔatn k’l ⌣ stk’masqt Outrigger station, located 66 km from CHIME. Of the 81 localized bursts, we use the probabilistic association of transients to their hosts algorithm to securely identify 21 new FRB host galaxies, and compile spectroscopic redshifts for 19 systems, 15 of which are newly obtained via spectroscopic observations. The most nearby source is FRB 20231229A, at a distance of 90 Mpc. One burst in our sample is from a previously reported repeating source in a galaxy merger (FRB 20190303A). Three new FRB host galaxies (FRBs 20230203A, 20230703A, and 20231206A) are found toward X-ray and optically selected galaxy clusters, potentially doubling the sample of known galaxy cluster FRBs. A search for radio counterparts reveals that FRB 20231128A is associated with a luminous persistent radio source (PRS) candidate with high significance (Pcc ∼ 10−2). If its compactness is confirmed, it would be the nearest known compact PRS atz= 0.1079. Our catalog significantly increases the statistics of the Macquart relation at low redshifts (z < 0.2). In the near future, the completed CHIME/FRB Outriggers array will produce hundreds of FRBs localized with very long baseline interferometry (VLBI). This will significantly expand the known sample and pave the way for future telescopes relying on VLBI for FRB localization. 
    more » « less
  3. Abstract The Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst (CHIME/FRB) Project has a new very long baseline interferometry (VLBI) Outrigger at the Green Bank Observatory (GBO), which forms a 3300 km baseline with CHIME operating at 400–800 MHz. Using 100 ms long full-array baseband “snapshots” collected commensally during FRB and pulsar triggers, we perform a shallow, wide-area VLBI survey covering a significant fraction of the northern sky targeted at the positions of compact sources from the Radio Fundamental Catalog. In addition, our survey contains calibrators detected from two 1 s long trial baseband snapshots for a deeper survey with CHIME and GBO. In this paper, we present the largest catalogue of compact calibrators suitable for 30 mas scale VLBI observations at subgigahertz frequencies to date. Our catalogue consists of 200 total calibrators in the Northern Hemisphere that are compact on 30 mas scales with fluxes above 100 mJy. This calibrator grid will enable the precise localization of hundreds of FRBs a year with CHIME/FRB Outriggers. 
    more » « less
  4. Abstract We report 10 fast radio bursts (FRBs) detected in the far sidelobe region (i.e., ≥5° off-meridian) of the Canadian Hydrogen Intensity Mapping Experiment (CHIME) from August 28 2018 to August 31 2021. We localize the bursts by fitting their spectra with a model of the CHIME/FRB synthesized beam response. We find that the far sidelobe events have on average ∼500 times greater fluxes than events detected in CHIME’s main lobe. We show that the sidelobe sample is therefore statistically ∼20 times closer than the main lobe sample. We find promising host galaxy candidates (Pcc< 1%) for two of the FRBs, 20190112B and 20210310B, at distances of 38 and 16 Mpc, respectively. CHIME/FRB did not observe repetition of similar brightness from the uniform sample of 10 sidelobe FRBs in a total exposure time of 35,580 hr. Under the assumption of Poisson-distributed bursts, we infer that the mean repetition interval above the detection threshold of the far sidelobe events is longer than 11,880 hr, which is at least 2380 times larger than the interval from known CHIME/FRB detected repeating sources, with some caveats, notably that very narrowband events could have been missed. Our results from these far sidelobe events suggest one of two scenarios: either (1) all FRBs repeat and the repetition intervals span a wide range, with high-rate repeaters being a rare sub-population, or (2) non-repeating FRBs are a distinct population different from known repeaters. 
    more » « less
  5. ABSTRACT Localization of fast radio bursts (FRBs) to arcsecond and subarcsecond precision maximizes their potential as cosmological probes. To that end, FRB detection instruments are deploying triggered complex-voltage capture systems to localize FRBs, identify their host galaxy, and measure a redshift. Here, we report the discovery and localization of two FRBs (20220717A and 20220905A) that were captured by the transient buffer system deployed by the MeerTRAP instrument at the MeerKAT telescope in South Africa. We were able to localize the FRBs to precision of $$\sim$$1 arcsecond that allowed us to unambiguously identify the host galaxy for FRB 20220717A (posterior probability $$\sim$$0.97). FRB 20220905A lies in a crowded region of the sky with a tentative identification of a host galaxy but the faintness and the difficulty in obtaining an optical spectrum preclude a conclusive association. The bursts show low linear polarization fractions (10–17 per cent) that conform to the large diversity in the polarization fraction observed in apparently non-repeating FRBs akin to single pulses from neutron stars. We also show that the host galaxy of FRB 20220717A contributes roughly 15 per cent of the total dispersion measure (DM), indicating that it is located in a plasma-rich part of the host galaxy which can explain the large rotation measure. The scattering in FRB 20220717A can be mostly attributed to the host galaxy and the intervening medium and is consistent with what is seen in the wider FRB population. 
    more » « less