skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on August 1, 2025

Title: High Probability Convergence Bounds for Non-convex Stochastic Gradient Descent with Sub-Weibull Noise
Stochastic gradient descent is one of the most common iterative algorithms used in machine learning and its convergence analysis is a rich area of research. Understanding its convergence properties can help inform what modifications of it to use in different settings. However, most theoretical results either assume convexity or only provide convergence results in mean. This paper, on the other hand, proves convergence bounds in high probability without assuming convexity. Assuming strong smoothness, we prove high probability convergence bounds in two settings: (1) assuming the Polyak-Łojasiewicz inequality and norm sub-Gaussian gradient noise and (2) assuming norm sub-Weibull gradient noise. In the second setting, as an intermediate step to proving convergence, we prove a sub-Weibull martingale difference sequence self-normalized concentration inequality of independent interest. It extends Freedman-type concentration beyond the sub-exponential threshold to heavier-tailed martingale difference sequences. We also provide a post-processing method that picks a single iterate with a provable convergence guarantee as opposed to the usual bound for the unknown best iterate. Our convergence result for sub-Weibull noise extends the regime where stochastic gradient descent has equal or better convergence guarantees than stochastic gradient descent with modifications such as clipping, momentum, and normalization.  more » « less
Award ID(s):
1923298
PAR ID:
10565591
Author(s) / Creator(s):
; ;
Editor(s):
Lacoste-Julien, Simon
Publisher / Repository:
JMLR
Date Published:
Journal Name:
Journal of machine learning research
Volume:
25
ISSN:
1532-4435
Page Range / eLocation ID:
1-36
Subject(s) / Keyword(s):
stochastic gradient descent, convergence bounds, sub-Weibull distributions, Polyak-Lojasiewicz inequality, Freedman inequality
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we study the convergence \emph{in high probability} of clipped gradient methods when the noise distribution has heavy tails, i.e., with bounded $p$th moments, for some $1 more » « less
  2. In this work, we study the convergence in high probability of clipped gradient methods when the noise distribution has heavy tails, i.e., with bounded $p$th moments, for some $1< p \leq 2$. Prior works in this setting follow the same recipe of using concentration inequalities and an inductive argument with union bound to bound the iterates across all iterations. This method results in an increase in the failure probability by a factor of $T$, where $T$ is the number of iterations. We instead propose a new analysis approach based on bounding the moment generating function of a well chosen supermartingale sequence. We improve the dependency on $T$ in the convergence guarantee for a wide range of algorithms with clipped gradients, including stochastic (accelerated) mirror descent for convex objectives and stochastic gradient descent for nonconvex objectives. Our high probability bounds achieve the optimal convergence rates and match the best currently known in-expectation bounds. Our approach naturally allows the algorithms to use time-varying step sizes and clipping parameters when the time horizon is unknown, which appears difficult or even impossible using existing techniques from prior works. Furthermore, we show that in the case of clipped stochastic mirror descent, several problem constants, including the initial distance to the optimum, are not required when setting step sizes and clipping parameters. 
    more » « less
  3. In this work, we describe a generic approach to show convergence with high probability for both stochastic convex and non-convex optimization with sub-Gaussian noise. In previous works for convex optimization, either the convergence is only in expectation or the bound depends on the diameter of the domain. Instead, we show high probability convergence with bounds depending on the initial distance to the optimal solution. The algorithms use step sizes analogous to the standard settings and are universal to Lipschitz functions, smooth functions, and their linear combinations. The method can be applied to the non-convex case. We demonstrate an $O((1+\sigma^{2}\log(1/\delta))/T+\sigma/\sqrt{T})$ convergence rate when the number of iterations $T$ is known and an $O((1+\sigma^{2}\log(T/\delta))/\sqrt{T})$ convergence rate when $T$ is unknown for SGD, where $1-\delta$ is the desired success probability. These bounds improve over existing bounds in the literature. We also revisit AdaGrad-Norm (Ward et al., 2019) and show a new analysis to obtain a high probability bound that does not require the bounded gradient assumption made in previous works. The full version of our paper contains results for the standard per-coordinate AdaGrad. 
    more » « less
  4. In this work, we describe a generic approach to show convergence with high probability for both stochastic convex and non-convex optimization with sub-Gaussian noise. In previous works for convex optimization, either the convergence is only in expectation or the bound depends on the diameter of the domain. Instead, we show high probability convergence with bounds depending on the initial distance to the optimal solution. The algorithms use step sizes analogous to the standard settings and are universal to Lipschitz functions, smooth functions, and their linear combinations. The method can be applied to the non-convex case. We demonstrate an $O((1+\sigma^{2}\log(1/\delta))/T+\sigma/\sqrt{T})$ convergence rate when the number of iterations $T$ is known and an $O((1+\sigma^{2}\log(T/\delta))/\sqrt{T})$ convergence rate when $T$ is unknown for SGD, where $1-\delta$ is the desired success probability. These bounds improve over existing bounds in the literature. We also revisit AdaGrad-Norm \cite{ward2019adagrad} and show a new analysis to obtain a high probability bound that does not require the bounded gradient assumption made in previous works. The full version of our paper contains results for the standard per-coordinate AdaGrad. 
    more » « less
  5. Minimax optimal convergence rates for classes of stochastic convex optimization problems are well characterized, where the majority of results utilize iterate averaged stochastic gradient descent (SGD) with polynomially decaying step sizes. In contrast, SGD's final iterate behavior has received much less attention despite their widespread use in practice. Motivated by this observation, this work provides a detailed study of the following question: what rate is achievable using the final iterate of SGD for the streaming least squares regression problem with and without strong convexity? First, this work shows that even if the time horizon T (i.e. the number of iterations SGD is run for) is known in advance, SGD's final iterate behavior with any polynomially decaying learning rate scheme is highly sub-optimal compared to the minimax rate (by a condition number factor in the strongly convex case and a factor of T‾‾√ in the non-strongly convex case). In contrast, this paper shows that Step Decay schedules, which cut the learning rate by a constant factor every constant number of epochs (i.e., the learning rate decays geometrically) offers significant improvements over any polynomially decaying step sizes. In particular, the final iterate behavior with a step decay schedule is off the minimax rate by only log factors (in the condition number for strongly convex case, and in T for the non-strongly convex case). Finally, in stark contrast to the known horizon case, this paper shows that the anytime (i.e. the limiting) behavior of SGD's final iterate is poor (in that it queries iterates with highly sub-optimal function value infinitely often, i.e. in a limsup sense) irrespective of the stepsizes employed. These results demonstrate the subtlety in establishing optimal learning rate schemes (for the final iterate) for stochastic gradient procedures in fixed time horizon settings. 
    more » « less