skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High Probability Convergence Bounds for Non-convex Stochastic Gradient Descent with Sub-Weibull Noise
Stochastic gradient descent is one of the most common iterative algorithms used in machine learning and its convergence analysis is a rich area of research. Understanding its convergence properties can help inform what modifications of it to use in different settings. However, most theoretical results either assume convexity or only provide convergence results in mean. This paper, on the other hand, proves convergence bounds in high probability without assuming convexity. Assuming strong smoothness, we prove high probability convergence bounds in two settings: (1) assuming the Polyak-Łojasiewicz inequality and norm sub-Gaussian gradient noise and (2) assuming norm sub-Weibull gradient noise. In the second setting, as an intermediate step to proving convergence, we prove a sub-Weibull martingale difference sequence self-normalized concentration inequality of independent interest. It extends Freedman-type concentration beyond the sub-exponential threshold to heavier-tailed martingale difference sequences. We also provide a post-processing method that picks a single iterate with a provable convergence guarantee as opposed to the usual bound for the unknown best iterate. Our convergence result for sub-Weibull noise extends the regime where stochastic gradient descent has equal or better convergence guarantees than stochastic gradient descent with modifications such as clipping, momentum, and normalization.  more » « less
Award ID(s):
1923298
PAR ID:
10565591
Author(s) / Creator(s):
; ;
Editor(s):
Lacoste-Julien, Simon
Publisher / Repository:
JMLR
Date Published:
Journal Name:
Journal of machine learning research
Volume:
25
ISSN:
1532-4435
Page Range / eLocation ID:
1-36
Subject(s) / Keyword(s):
stochastic gradient descent, convergence bounds, sub-Weibull distributions, Polyak-Lojasiewicz inequality, Freedman inequality
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the problem of minimizing a convex function that is evolving according to unknown and possibly stochastic dynamics, which may depend jointly on time and on the decision variable itself. Such problems abound in the machine learning and signal processing literature, under the names of concept drift, stochastic tracking, and performative prediction. We provide novel non-asymptotic convergence guarantees for stochastic algorithms with iterate averaging, focusing on bounds valid both in expectation and with high probability. The efficiency estimates we obtain clearly decouple the contributions of optimization error, gradient noise, and time drift. Notably, we identify a low drift-to-noise regime in which the tracking efficiency of the proximal stochastic gradient method benefits significantly from a step decay schedule. Numerical experiments illustrate our results. 
    more » « less
  2. In this work, we study the convergence \emph{in high probability} of clipped gradient methods when the noise distribution has heavy tails, i.e., with bounded $$p$$th moments, for some $$1 
    more » « less
  3. In this work, we study the convergence in high probability of clipped gradient methods when the noise distribution has heavy tails, i.e., with bounded $$p$$th moments, for some $$1< p \leq 2$$. Prior works in this setting follow the same recipe of using concentration inequalities and an inductive argument with union bound to bound the iterates across all iterations. This method results in an increase in the failure probability by a factor of $$T$$, where $$T$$ is the number of iterations. We instead propose a new analysis approach based on bounding the moment generating function of a well chosen supermartingale sequence. We improve the dependency on $$T$$ in the convergence guarantee for a wide range of algorithms with clipped gradients, including stochastic (accelerated) mirror descent for convex objectives and stochastic gradient descent for nonconvex objectives. Our high probability bounds achieve the optimal convergence rates and match the best currently known in-expectation bounds. Our approach naturally allows the algorithms to use time-varying step sizes and clipping parameters when the time horizon is unknown, which appears difficult or even impossible using existing techniques from prior works. Furthermore, we show that in the case of clipped stochastic mirror descent, several problem constants, including the initial distance to the optimum, are not required when setting step sizes and clipping parameters. 
    more » « less
  4. Minimax optimal convergence rates for numerous classes of stochastic convex optimization problems are well characterized, where the majority of results utilize iterate averaged stochastic gradient descent (SGD) with polynomially decaying step sizes. In contrast, the behavior of SGD’s final iterate has received much less attention despite the widespread use in practice. Motivated by this observation, this work provides a detailed study of the following question: what rate is achievable using the final iterate of SGD for the streaming least squares regression problem with and without strong convexity? First, this work shows that even if the time horizon T (i.e. the number of iterations that SGD is run for) is known in advance, the behavior of SGD’s final iterate with any polynomially decaying learning rate scheme is highly sub-optimal compared to the statistical minimax rate (by a condition number factor in the strongly convex √ case and a factor of shows that Step Decay schedules, which cut the learning rate by a constant factor every constant number of epochs (i.e., the learning rate decays geometrically) offer significant improvements over any polynomially decaying step size schedule. In particular, the behavior of the final iterate with step decay schedules is off from the statistical minimax rate by only log factors (in the condition number for the strongly convex case, and in T in the non-strongly convex case). Finally, in stark contrast to the known horizon case, this paper shows that the anytime (i.e. the limiting) behavior of SGD’s final iterate is poor (in that it queries iterates with highly sub-optimal function value infinitely often, i.e. in a limsup sense) irrespective of the stepsize scheme employed. These results demonstrate the subtlety in establishing optimal learning rate schedules (for the final iterate) for stochastic gradient procedures in fixed time horizon settings. 
    more » « less
  5. Minimax optimal convergence rates for classes of stochastic convex optimization problems are well characterized, where the majority of results utilize iterate averaged stochastic gradient descent (SGD) with polynomially decaying step sizes. In contrast, SGD's final iterate behavior has received much less attention despite their widespread use in practice. Motivated by this observation, this work provides a detailed study of the following question: what rate is achievable using the final iterate of SGD for the streaming least squares regression problem with and without strong convexity? First, this work shows that even if the time horizon T (i.e. the number of iterations SGD is run for) is known in advance, SGD's final iterate behavior with any polynomially decaying learning rate scheme is highly sub-optimal compared to the minimax rate (by a condition number factor in the strongly convex case and a factor of T‾‾√ in the non-strongly convex case). In contrast, this paper shows that Step Decay schedules, which cut the learning rate by a constant factor every constant number of epochs (i.e., the learning rate decays geometrically) offers significant improvements over any polynomially decaying step sizes. In particular, the final iterate behavior with a step decay schedule is off the minimax rate by only log factors (in the condition number for strongly convex case, and in T for the non-strongly convex case). Finally, in stark contrast to the known horizon case, this paper shows that the anytime (i.e. the limiting) behavior of SGD's final iterate is poor (in that it queries iterates with highly sub-optimal function value infinitely often, i.e. in a limsup sense) irrespective of the stepsizes employed. These results demonstrate the subtlety in establishing optimal learning rate schemes (for the final iterate) for stochastic gradient procedures in fixed time horizon settings. 
    more » « less