Abstract Stomata play a critical role in regulating plant responses to climate. Where sister species differ in stomatal traits, interspecific gene flow can influence the evolutionary trajectory of trait variation, with consequences to adaptation.Leveraging six latitudinally-distributed transects spanning the natural hybrid zone betweenPopulus trichocarpa–P. balsamifera, we used whole genome resequencing and replicate common garden experiments to test the role that interspecific gene flow and selection play to stomatal trait evolution.While species-specific differences in the distribution of stomata persist betweenP. balsamiferaandP. trichocarpa, hybrids on average resembledP. trichocarpa. Admixture mapping identified several candidate genes associated with stomatal trait variation in hybrids includingTWIST, a homolog ofSPEECHLESSinArabidopsis, that initiates stomatal development via asymmetric cell divisions. Geographic clines revealed candidate genes deviating from genome-wide average patterns of introgression, suggesting restricted gene flow and the maintenance of adaptive differences. Climate associations, particularly with precipitation, indicated selection shapes local ancestry at candidate genes across transects.These results highlight the role of climate in shaping stomatal trait evolution inPopulusand demonstrate how interspecific gene flow creates novel genetic combinations that may enhance adaptive potential in changing environments.
more »
« less
The genomics and physiology of abiotic stressors associated with global elevational gradients in Arabidopsis thaliana
Summary Phenotypic and genomic diversity inArabidopsis thalianamay be associated with adaptation along its wide elevational range, but it is unclear whether elevational clines are consistent among different mountain ranges.We took a multi‐regional view of selection associated with elevation. In a diverse panel of ecotypes, we measured plant traits under alpine stressors (low CO2partial pressure, high light, and night freezing) and conducted genome‐wide association studies.We found evidence of contrasting locally adaptive regional clines. Western Mediterranean ecotypes showed low water use efficiency (WUE)/early flowering at low elevations to high WUE/late flowering at high elevations. Central Asian ecotypes showed the opposite pattern. We mapped different candidate genes for each region, and some quantitative trait loci (QTL) showed elevational and climatic clines likely maintained by selection. Consistent with regional heterogeneity, trait and QTL clines were evident at regional scales (c. 2000 km) but disappeared globally. Antioxidants and pigmentation rarely showed elevational clines. High elevation east African ecotypes might have higher antioxidant activity under night freezing.Physiological and genomic elevational clines in different regions can be unique, underlining the complexity of local adaptation in widely distributed species, while hindering global trait–environment or genome–environment associations. To tackle the mechanisms of range‐wide local adaptation, regional approaches are thus warranted.
more »
« less
- Award ID(s):
- 1927009
- PAR ID:
- 10565749
- Publisher / Repository:
- New Phytologist
- Date Published:
- Journal Name:
- New Phytologist
- Volume:
- 244
- Issue:
- 5
- ISSN:
- 0028-646X
- Page Range / eLocation ID:
- 2062 to 2077
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Hines, Heather (Ed.)Abstract Biogeographic clines in morphology along environmental gradients can illuminate forces influencing trait evolution within and between species. Latitude has long been studied as a driver of morphological clines, with a focus on body size and temperature. However, counteracting environmental pressures may impose constraints on body size. In montane landscapes, declines in air density with elevation can negatively impact flight performance in volant species, which may contribute to selection for reduced body mass despite declining temperatures. We examine morphology in two bumble bee (Hymenoptera: Apidae: Bombus Latreille) species, Bombus vancouverensis Cresson and Bombus vosnesenskii Radoszkowski, across mountainous regions of California, Oregon, and Washington, United States. We incorporate population genomic data to investigate the relationship between genomic ancestry and morphological divergence. We find that B. vancouverensis, which tends to be more specialized for high elevations, exhibits stronger spatial-environmental variation, being smaller in the southern and higher elevation parts of its range and having reduced wing loading (mass relative to wing area) at high elevations. Bombus vosnesenskii, which is more of an elevational generalist, has substantial trait variation, but spatial-environmental correlations are weak. Population structure is stronger in the smaller B. vancouverensis, and we find a significant association between elevation and wing loading after accounting for genetic structure, suggesting the possibility of local adaptation for this flight performance trait. Our findings suggest that some conflicting results for body size trends may stem from distinct environmental pressures that impact different aspects of bumble bee ecology, and that different species show different morphological clines in the same region.more » « less
-
Abstract Tropical elevation gradients support highly diverse assemblages, but competing hypotheses suggest either peak species richness in lowland rainforests or at mid‐elevations. We investigated scolytine beetles—phloem, ambrosia and seed‐feeding beetles—along a tropical elevational gradient in Papua New Guinea.Highly standardised sampling from 200 to 3700 m above sea level (asl) identified areas of highest and lowest species richness, abundance and other biodiversity variables.Using passive flight intercept traps at eight elevations from 200 to 3500 m asl, we collected over 9600 specimens representing 215 species. Despite extensive sampling, species accumulation curves suggest that diversity was not fully exhausted.Scolytine species richness followed a unimodal distribution, peaking between 700 and 1200 m asl, supporting prior findings of highest diversity at low‐to‐mid elevations.Alternative models, such as a monotonous decrease from lowlands to higher elevations and a mid‐elevation maximum, showed lesser fit to our data. Abundance is greatest at the lowest sites, driven by a few extremely abundant species. The turnover rate—beta diversity between elevation steps—is greatest between the highest elevations.Among dominant tribes—Dryocoetini, Xyleborini and Cryphalini—species richness peaked between 700 and 2200 m asl. Taxon‐specific analyses revealed distinct patterns:Euwallaceaspp. abundance uniformly declined with elevation, while other genera were driven by dominant species at different elevations.Coccotrypesand phloem‐feedingCryphalushave undergone evolutionary radiations in New Guinea, with many species still undescribed. Species not yet known to science are most likely to be found at lower and middle elevations, where overall diversity is highest.more » « less
-
Summary Genome merging is a common phenomenon causing a wide range of consequences on phenotype, adaptation, and gene expression, yet its broader implications are not well‐understood. Two consequences of genome merging on gene expression remain particularly poorly understood: dosage effects and evolution of expression.We employedChlamydomonas reinhardtiias a model to investigate the effects of asymmetric genome merging by crossing a diploid with a haploid strain to create a novel triploid line. Five independent clonal lineages derived from this triploid line were evolved for 425 asexual generations in a laboratory natural selection experiment.Utilizing fitness assays, flow cytometry, and RNA‐Seq, we assessed the immediate consequences of genome merging and subsequent evolution. Our findings reveal substantial alterations in genome size, gene expression, protein homeostasis, and cytonuclear stoichiometry. Gene expression exhibited expression‐level dominance and transgressivity (i.e. expression level higher or lower than either parent). Ongoing expression‐level dominance and a pattern of ‘functional dominance’ from the haploid parent was observed.Despite major genomic and nucleo‐cytoplasmic disruptions, enhanced fitness was detected in the triploid strain. By comparing gene expression across generations, our results indicate that proteostasis restoration is a critical component of rapid adaptation following genome merging inChlamydomonas reinhardtiiand possibly other systems.more » « less
-
Chapman, Mark (Ed.)Abstract Populations along steep environmental gradients are subject to differentiating selection that can result in local adaptation, despite countervailing gene flow, and genetic drift. In montane systems, where species are often restricted to narrow ranges of elevation, it is unclear whether the selection is strong enough to influence functional differentiation of subpopulations differing by a few hundred meters in elevation. We used targeted capture of 12 501 exons from across the genome, including 271 genes previously implicated in altitude adaptation, to test for adaptation to local elevations for 2 highland hummingbird species, Coeligena violifer (n = 62) and Colibri coruscans (n = 101). For each species, we described population genetic structure across the complex geography of the Peruvian Andes and, while accounting for this structure, we tested whether elevational allele frequency clines in single nucleotide polymorphisms (SNPs) showed evidence for local adaptation to elevation. Although the 2 species exhibited contrasting population genetic structures, we found signatures of clinal genetic variation with shifts in elevation in both. The genes with SNP-elevation associations included candidate genes previously discovered for high-elevation adaptation as well as others not previously identified, with cellular functions related to hypoxia response, energy metabolism, and immune function, among others. Despite the homogenizing effects of gene flow and genetic drift, natural selection on parts of the genome evidently optimizes elevation-specific cellular function even within elevation range-restricted montane populations. Consequently, our results suggest local adaptation occurring in narrow elevation bands in tropical mountains, such as the Andes, may effectively make them “taller” biogeographic barriers.more » « less
An official website of the United States government

