Iceberg calving is a major contributor to Greenland’s ice mass loss. Ice mélange, tightly packed sea ice and icebergs, has been hypothesized to buttress the calving fronts. However, quantifying the mélange buttressing force from field observations remains a challenge. Here we show that such quantification can be achieved with a single field measurement: thickness of mélange at the glacier terminus. We develop the first three-dimensional discrete element model of m´elange along with a simple analytical model to quantify the mélange buttressing using mélange thickness data from ArcticDEM over 32 Greenland glacier termini. We observed a strong seasonality in mélange thickness: thin mélange (averaged thickness 34+17−15m) in summertime when terminus retreats, and thick mélange (averaged thickness 119+31−37m) in wintertime when terminus advances. The observed seasonal changes of mélange thickness strongly coincide with observed Greenland calving dynamics and the modeled buttressing effects.
Iceberg calving is a major contributor to Greenland’s ice mass loss. Ice mélange, tightly packed sea ice and icebergs, has been hypothesized to buttress the calving fronts. However, quantifying the mélange buttressing force from field observations remains a challenge. Here we show that such quantification can be achieved with a single field measurement: thickness of mélange at the glacier terminus. We develop a three-dimensional discrete element model of mélange along with a simple analytical model to quantify the mélange buttressing using mélange thickness data from ArcticDEM over 32 Greenland glacier termini. We observed a strong seasonality in mélange thickness: thin mélange (averaged thickness
- PAR ID:
- 10565758
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 16
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract The electric
E 1 and magneticM 1 dipole responses of the nucleus$$N=Z$$ Mg were investigated in an inelastic photon scattering experiment. The 13.0 MeV electrons, which were used to produce the unpolarised bremsstrahlung in the entrance channel of the$$^{24}$$ Mg($$^{24}$$ ) reaction, were delivered by the ELBE accelerator of the Helmholtz-Zentrum Dresden-Rossendorf. The collimated bremsstrahlung photons excited one$$\gamma ,\gamma ^{\prime }$$ , four$$J^{\pi }=1^-$$ , and six$$J^{\pi }=1^+$$ states in$$J^{\pi }=2^+$$ Mg. De-excitation$$^{24}$$ rays were detected using the four high-purity germanium detectors of the$$\gamma $$ ELBE setup, which is dedicated to nuclear resonance fluorescence experiments. In the energy region up to 13.0 MeV a total$$\gamma $$ is observed, but this$$B(M1)\uparrow = 2.7(3)~\mu _N^2$$ nucleus exhibits only marginal$$N=Z$$ E 1 strength of less than e$$\sum B(E1)\uparrow \le 0.61 \times 10^{-3}$$ fm$$^2 \, $$ . The$$^2$$ branching ratios in combination with the expected results from the Alaga rules demonstrate that$$B(\varPi 1, 1^{\pi }_i \rightarrow 2^+_1)/B(\varPi 1, 1^{\pi }_i \rightarrow 0^+_{gs})$$ K is a good approximative quantum number for Mg. The use of the known$$^{24}$$ strength and the measured$$\rho ^2(E0, 0^+_2 \rightarrow 0^+_{gs})$$ branching ratio of the 10.712 MeV$$B(M1, 1^+ \rightarrow 0^+_2)/B(M1, 1^+ \rightarrow 0^+_{gs})$$ level allows, in a two-state mixing model, an extraction of the difference$$1^+$$ between the prolate ground-state structure and shape-coexisting superdeformed structure built upon the 6432-keV$$\varDelta \beta _2^2$$ level.$$0^+_2$$ -
Abstract Consider two half-spaces
and$$H_1^+$$ in$$H_2^+$$ whose bounding hyperplanes$${\mathbb {R}}^{d+1}$$ and$$H_1$$ are orthogonal and pass through the origin. The intersection$$H_2$$ is a spherical convex subset of the$${\mathbb {S}}_{2,+}^d:={\mathbb {S}}^d\cap H_1^+\cap H_2^+$$ d -dimensional unit sphere , which contains a great subsphere of dimension$${\mathbb {S}}^d$$ and is called a spherical wedge. Choose$$d-2$$ n independent random points uniformly at random on and consider the expected facet number of the spherical convex hull of these points. It is shown that, up to terms of lower order, this expectation grows like a constant multiple of$${\mathbb {S}}_{2,+}^d$$ . A similar behaviour is obtained for the expected facet number of a homogeneous Poisson point process on$$\log n$$ . The result is compared to the corresponding behaviour of classical Euclidean random polytopes and of spherical random polytopes on a half-sphere.$${\mathbb {S}}_{2,+}^d$$ -
Abstract Thin film evaporation is a widely-used thermal management solution for micro/nano-devices with high energy densities. Local measurements of the evaporation rate at a liquid-vapor interface, however, are limited. We present a continuous profile of the evaporation heat transfer coefficient (
) in the submicron thin film region of a water meniscus obtained through local measurements interpreted by a machine learned surrogate of the physical system. Frequency domain thermoreflectance (FDTR), a non-contact laser-based method with micrometer lateral resolution, is used to induce and measure the meniscus evaporation. A neural network is then trained using finite element simulations to extract the$$h_{\text {evap}}$$ profile from the FDTR data. For a substrate superheat of 20 K, the maximum$$h_{\text {evap}}$$ is$$h_{\text {evap}}$$ MW/$$1.0_{-0.3}^{+0.5}$$ -K at a film thickness of$$\text {m}^2$$ nm. This ultrahigh$$15_{-3}^{+29}$$ value is two orders of magnitude larger than the heat transfer coefficient for single-phase forced convection or evaporation from a bulk liquid. Under the assumption of constant wall temperature, our profiles of$$h_{\text {evap}}$$ and meniscus thickness suggest that 62% of the heat transfer comes from the region lying 0.1–1 μm from the meniscus edge, whereas just 29% comes from the next 100 μm.$$h_{\text {evap}}$$ -
Abstract A method for modelling the prompt production of molecular states using the hadronic rescattering framework of the general-purpose Pythia event generator is introduced. Production cross sections of possible exotic hadronic molecules via hadronic rescattering at the LHC are calculated for the
resonance, a possible tetraquark state, as well as three possible pentaquark states,$$\chi _{c1}(3872)$$ ,$$P_c^+(4312)$$ , and$$P_c^+(4440)$$ . For the$$P_c^+(4457)$$ states, the expected cross section from$$P_c^+$$ decays is compared to the hadronic-rescattering production. The$$\Lambda _b$$ cross section is compared to the fiducial$$\chi _{c1}(3872)$$ cross-section measurement by LHCb and found to contribute at a level of$$\chi _{c1}(3872)$$ . Finally, the expected yields of$${\mathcal {O}({1\%})}$$ production from hadronic rescattering during Run 3 of LHCb are estimated. The prompt background is found to be significantly larger than the prompt$$\mathrm {P_c^{+}}$$ signal from hadronic rescattering.$$\mathrm {P_c^{+}}$$