skip to main content


This content will become publicly available on December 24, 2025

Title: Population Genomics of Adaptive Radiation
ABSTRACT Adaptive radiations are rich laboratories for exploring, testing, and understanding key theories in evolution and ecology because they offer spectacular displays of speciation and ecological adaptation. Particular challenges to the study of adaptive radiation include high levels of species richness, rapid speciation, and gene flow between species. Over the last decade, high‐throughput sequencing technologies and access to population genomic data have lessened these challenges by enabling the analysis of samples from many individual organisms at whole‐genome scales. Here we review how population genomic data have facilitated our knowledge of adaptive radiation in five key areas: (1) phylogenetics, (2) hybridization, (3) timing and rates of diversification, (4) the genomic basis of trait evolution, and (5) the role of genome structure in divergence. We review current knowledge in each area, highlight outstanding questions, and focus on methods that facilitate detection of complex patterns in the divergence and demography of populations through time. It is clear that population genomic data are revolutionising the ability to reconstruct evolutionary history in rapidly diversifying clades. Additionally, studies are increasingly emphasising the central role of gene flow, re‐use of standing genetic variation during adaptation, and structural genomic elements as facilitators of the speciation process in adaptive radiations. We highlight hybridization—and the hypothesized processes by which it shapes diversification—and questions seeking to bridge the divide between microevolutionary and macroevolutionary processes as rich areas for future study. Overall, access to population genomic data has facilitated an exciting era in adaptive radiation research, with implications for deeper understanding of fundamental evolutionary processes across the tree of life.  more » « less
Award ID(s):
2224892
PAR ID:
10565790
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Molecular Ecology
Volume:
34
Issue:
2
ISSN:
0962-1083
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Josephs, Emily (Ed.)
    Abstract

    Adaptive radiations are characterized by rapid ecological diversification and speciation events, leading to fuzzy species boundaries between ecologically differentiated species. Adaptive radiations are therefore key systems for understanding how species are formed and maintained, including the role of de novo mutations versus preexisting variation in ecological adaptation and the genome-wide consequences of hybridization events. For example, adaptive introgression, where beneficial alleles are transferred between lineages through hybridization, may fuel diversification in adaptive radiations and facilitate adaptation to new environments. In this study, we employed whole-genome resequencing data to investigate the evolutionary origin of hummingbird-pollinated flowers and to characterize genome-wide patterns of phylogenetic discordance and introgression in Penstemon subgenus Dasanthera, a small and diverse adaptive radiation of plants. We found that magenta hummingbird-adapted flowers have apparently evolved twice from ancestral blue-violet bee-pollinated flowers within this radiation. These shifts in flower color are accompanied by a variety of inactivating mutations to a key anthocyanin pathway enzyme, suggesting that independent de novo loss-of-function mutations underlie the parallel evolution of this trait. Although patterns of introgression and phylogenetic discordance were heterogenous across the genome, a strong effect of gene density suggests that, in general, natural selection opposes introgression and maintains genetic differentiation in gene-rich genomic regions. Our results highlight the importance of both de novo mutation and introgression as sources of evolutionary change and indicate a role for de novo mutation in driving parallel evolution in adaptive radiations.

     
    more » « less
  2. Abstract

    Divergent adaptation to new ecological opportunities can be an important factor initiating speciation. However, as niches are filled during adaptive radiations, trait divergence driving reproductive isolation between sister taxa may also result in trait convergence with more distantly related taxa, increasing the potential for reticulated gene flow across the radiation. Here, we demonstrate such a scenario in a recent adaptive radiation ofRhagoletisfruit flies, specialized on different host plants. Throughout this radiation, shifts to novel hosts are associated with changes in diapause life history timing, which act as “magic traits” generating allochronic reproductive isolation and facilitating speciation‐with‐gene‐flow. Evidence from laboratory rearing experiments measuring adult emergence timing and genome‐wide DNA‐sequencing surveys supported allochronic speciation between summer‐fruitingVacciniumspp.‐infestingRhagoletis mendaxand its hypothesized and undescribed sister taxon infesting autumn‐fruiting sparkleberries. The sparkleberry fly andRmendaxwere shown to be genetically discrete sister taxa, exhibiting no detectable gene flow and allochronically isolated by a 2‐month average difference in emergence time corresponding to host availability. At sympatric sites across the southern USA, the later fruiting phenology of sparkleberries overlaps with that of flowering dogwood, the host of another more distantly related and undescribedRhagoletistaxon. Laboratory emergence data confirmed broadly overlapping life history timing and genomic evidence supported on‐going gene flow between sparkleberry and flowering dogwood flies. Thus, divergent phenological adaptation can drive the initiation of reproductive isolation, while also enhancing genetic exchange across broader adaptive radiations, potentially serving as a source of novel genotypic variation and accentuating further diversification.

     
    more » « less
  3. Rapid adaptive radiation poses a distinct question apart from speciation and adaptation: what happens after one speciation event? That is, how are some lineages able to continue speciating through a rapid burst? This question connects global macroevolutionary patterns to microevolutionary processes. Here we review major features of rapid radiations in nature and their mismatch with theoretical models and what is currently known about speciation mechanisms. Rapid radiations occur on three major diversification axes – species richness, phenotypic disparity, and ecological diversity – with exceptional outliers on each axis. The paradox is that the hallmark early stage of adaptive radiation, a rapid burst of speciation and niche diversification, is contradicted by most existing speciation models which instead predict continuously decelerating speciation rates and niche subdivision through time. Furthermore, while speciation mechanisms such as magic traits, phenotype matching, and physical linkage of co-adapted alleles promote speciation, it is often not discussed how these mechanisms could promote multiple speciation events in rapid succession. Additional mechanisms beyond ecological opportunity are needed to understand how rapid radiations occur. We review the evidence for five emerging theories: 1) the ‘transporter’ hypothesis: introgression and the ancient origins of adaptive alleles, 2) the ‘signal complexity’ hypothesis: the dimensionality of sexual traits, 3) the connectivity of fitness landscapes, 4) ‘diversity begets diversity’, and 5) flexible stem/‘plasticity first’. We propose new questions and predictions to guide future work on the mechanisms underlying the rare origins of rapid radiation. 
    more » « less
  4. Abstract

    Insights into the generation of diversity in both plants and animals have relied heavily on studying speciation in adaptive radiations. Russia's Lake Baikal has facilitated a putative adaptive radiation of cottid fishes (sculpins), some of which are highly specialized to inhabit novel niches created by the lake's unique geology and ecology. Here, we test evolutionary relationships and novel morphological adaptation in a piece of this radiation: the Baikal cottid genus,Cottocomephorus, a morphologically derived benthopelagic genus of three described species. We used a combination of mitochondrial DNA and restriction site associated DNA sequencing from allCottocomephorusspecies. Analysis of mitochondrial cytochrome b haplotypes was only able to two resolve two lineages:CgrewingkiiandCcomephoroides/inermis. Phylogenetic inference, principal component analysis, andfaststructureof genome‐wide SNPs uncovered three lineages withinCottocomephorus:Ccomephoroides,CinermisandCgrewingkii. We found recent divergence and admixture betweenCcomephoroidesandCinermisand deep divergence between these two species andCgrewingkii. Contrasting other fish radiations, we found no evidence of ancient hybridization amongCottocomephorusspecies. Digital morphology revealed highly derived pelagic phenotypes that reflect divergence by specialization to the benthopelagic niche inCottocomephorus. AmongCottocomephorusspecies, we found evidence of ongoing adaptation to the pelagic zone. This pattern highlights the importance of speciation along a benthic‐pelagic gradient seen inCottocomephorusand across other adaptive fish radiations.

     
    more » « less
  5. Abstract Adaptive radiation plays a fundamental role in our understanding of the evolutionary process. However, the concept has provoked strong and differing opinions concerning its definition and nature among researchers studying a wide diversity of systems. Here, we take a broad view of what constitutes an adaptive radiation, and seek to find commonalities among disparate examples, ranging from plants to invertebrate and vertebrate animals, and remote islands to lakes and continents, to better understand processes shared across adaptive radiations. We surveyed many groups to evaluate factors considered important in a large variety of species radiations. In each of these studies, ecological opportunity of some form is identified as a prerequisite for adaptive radiation. However, evolvability, which can be enhanced by hybridization between distantly related species, may play a role in seeding entire radiations. Within radiations, the processes that lead to speciation depend largely on (1) whether the primary drivers of ecological shifts are (a) external to the membership of the radiation itself (mostly divergent or disruptive ecological selection) or (b) due to competition within the radiation membership (interactions among members) subsequent to reproductive isolation in similar environments, and (2) the extent and timing of admixture. These differences translate into different patterns of species accumulation and subsequent patterns of diversity across an adaptive radiation. Adaptive radiations occur in an extraordinary diversity of different ways, and continue to provide rich data for a better understanding of the diversification of life. 
    more » « less