This paper presents the design, modeling, analysis, and experimental results of a bipedal robotic system that utilizes two interconnected single degree-of-freedom leg mechanisms to produce stable forward locomotion and steering. The legs are composed of double four-bar mechanism connected in series that maintain a parallel orientation of a flat foot, relative to the biped body, that is actuated via a Reuleaux triangle cam-follower system to produce a desirable foot trajectory. The mechanical design of the leg mechanism is presented followed by kinematic analysis of the cam-follower system to select the optimal foot trajectory and synthesize the mechanism dimensions and produce a desired step height and step length. The concept of leg sequencing is then presented to maintain a constant body height above the ground and a constant forward walking velocity. Experimental results using an integrated prototype indicate that the proposed biped robot is capable of maintaining quasi-static stability during locomotion, maintaining a constant robot body height, maintaining a constant body orientation, move forward with a constant maximum velocity of 27.4 cm/s, and steer.
more »
« less
Brain–body-task co-adaptation can improve autonomous learning and speed of bipedal walking
Abstract Inspired by animals that co-adapt their brain and body to interact with the environment, we present a tendon-driven and over-actuated (i.e.njoint,n+1 actuators) bipedal robot that (i) exploits its backdrivable mechanical properties to manage body-environment interactions without explicit control,and(ii) uses a simple 3-layer neural network to learn to walk after only 2 min of ‘natural’ motor babbling (i.e. an exploration strategy that is compatible with leg and task dynamics; akin to childsplay). This brain–body collaboration first learns to produce feet cyclical movements ‘in air’ and, without further tuning, can produce locomotion when the biped is lowered to be in slight contact with the ground. In contrast, training with 2 min of ‘naïve’ motor babbling (i.e. an exploration strategy that ignores leg task dynamics), does not produce consistent cyclical movements ‘in air’, and produces erratic movements and no locomotion when in slight contact with the ground. When further lowering the biped and making the desired leg trajectories reach 1 cm below ground (causing the desired-vs-obtained trajectories error to be unavoidable), cyclical movements based on either natural or naïve babbling presented almost equally persistent trends, and locomotion emerged with naïve babbling. Therefore, we show how continual learning of walking in unforeseen circumstances can be driven by continual physical adaptation rooted in the backdrivable properties of the plant and enhanced by exploration strategies that exploit plant dynamics. Our studies also demonstrate that the bio-inspired co-design and co-adaptations of limbs and control strategies can produce locomotion without explicit control of trajectory errors.
more »
« less
- Award ID(s):
- 2113096
- PAR ID:
- 10565889
- Date Published:
- Journal Name:
- Bioinspiration & Biomimetics
- Volume:
- 19
- Issue:
- 6
- ISSN:
- 1748-3182
- Page Range / eLocation ID:
- 066008
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Existing models of human walking use low-level reflexes or neural oscillators to generate movement. While appropriate to generate the stable, rhythmic movement patterns of steady-state walking, these models lack the ability to change their movement patterns or spontaneously generate new movements in the specific, goal-directed way characteristic of voluntary movements. Here we present a neuromuscular model of human locomotion that bridges this gap and combines the ability to execute goal directed movements with the generation of stable, rhythmic movement patterns that are required for robust locomotion. The model represents goals for voluntary movements of the swing leg on the task level of swing leg joint kinematics. Smooth movements plans towards the goal configuration are generated on the task level and transformed into descending motor commands that execute the planned movements, using internal models. The movement goals and plans are updated in real time based on sensory feedback and task constraints. On the spinal level, the descending commands during the swing phase are integrated with a generic stretch reflex for each muscle. Stance leg control solely relies on dedicated spinal reflex pathways. Spinal reflexes stimulate Hill-type muscles that actuate a biomechanical model with eight internal joints and six free-body degrees of freedom. The model is able to generate voluntary, goal-directed reaching movements with the swing leg and combine multiple movements in a rhythmic sequence. During walking, the swing leg is moved in a goal-directed manner to a target that is updated in real-time based on sensory feedback to maintain upright balance, while the stance leg is stabilized by low-level reflexes and a behavioral organization switching between swing and stance control for each leg. With this combination of reflex-based stance leg and voluntary, goal-directed control of the swing leg, the model controller generates rhythmic, stable walking patterns in which the swing leg movement can be flexibly updated in real-time to step over or around obstacles.more » « less
-
Whole-body control (WBC) is a generic task-oriented control method for feedback control of loco-manipulation behaviors in humanoid robots. The combination of WBC and model-based walking controllers has been widely utilized in various humanoid robots. However, to date, the WBC method has not been employed for unsupported passive-ankle dynamic locomotion. As such, in this article, we devise a new WBC, dubbed the whole-body locomotion controller (WBLC), that can achieve experimental dynamic walking on unsupported passive-ankle biped robots. A key aspect of WBLC is the relaxation of contact constraints such that the control commands produce reduced jerk when switching foot contacts. To achieve robust dynamic locomotion, we conduct an in-depth analysis of uncertainty for our dynamic walking algorithm called the time-to-velocity-reversal (TVR) planner. The uncertainty study is fundamental as it allows us to improve the control algorithms and mechanical structure of our robot to fulfill the tolerated uncertainty. In addition, we conduct extensive experimentation for: (1) unsupported dynamic balancing (i.e., in-place stepping) with a six-degree-of-freedom biped, Mercury; (2) unsupported directional walking with Mercury; (3) walking over an irregular and slippery terrain with Mercury; and 4) in-place walking with our newly designed ten-DoF viscoelastic liquid-cooled biped, DRACO. Overall, the main contributions of this work are on: (a) achieving various modalities of unsupported dynamic locomotion of passive-ankle bipeds using a WBLC controller and a TVR planner; (b) conducting an uncertainty analysis to improve the mechanical structure and the controllers of Mercury; and (c) devising a whole-body control strategy that reduces movement jerk during walking.more » « less
-
Miniaturizing legged robot platforms is challenging due to hardware limitations that constrain the number, power density, and precision of actuators at that size. By leveraging design principles of quasi-passive walking robots at any scale, stable locomotion and steering can be achieved with simple mechanisms and open-loop control. Here, we present the design and control of "Zippy", the smallest self-contained bipedal walking robot at only 3.6 cm tall. Zippy has rounded feet, a single motor without feedback control, and is capable of turning, skipping, and ascending steps. At its fastest pace, the robot achieves a forward walking speed of 25 cm/s, which is10 leg lengths per second, the fastest biped robot of any size by that metric. This work explores the design and performance of the robot and compares it to similar dynamic walking robots at larger scales.more » « less
-
Miniaturizing legged robot platforms is challenging due to hardware limitations that constrain the number, power density, and precision of actuators at that size. By leveraging design principles of quasi-passive walking robots at any scale, stable locomotion and steering can be achieved with simple mechanisms and open-loop control. Here, we present the design and control of “Zippy”, the smallest self-contained bipedal walking robot at only 3.6 cm tall. Zippy has rounded feet, a single motor without feedback control, and is capable of turning, skipping, and ascending steps. At its fastest pace, the robot achieves a forward walking speed of 25 cm/s, which is10 leg lengths per second, the fastest biped robot of any size by that metric. This work explores the design and performance of the robot and compares it to similar dynamic walking robots at larger scales.more » « less
An official website of the United States government

