ABSTRACT Introduction Materials and methods Results Discussion Conclusion Acknowledgements Disclosure statement Additional information References ABSTRACT Global health researchers often discount mutual learning and benefit to address shared health challenges across high and low- and middle-income settings. Drawing from a 30-year partnership called AMPATH that started between Indiana University in the US and Moi University in Kenya, we describe an innovative approach and program for mutual learning and benefit coined ‘reciprocal innovation.’ Reciprocal innovation harnesses a bidirectional, co-constituted, and iterative exchange of ideas, resources, and innovations to address shared health challenges across diverse global settings. The success of AMPATH in Kenya, particularly in HIV/AIDS and community health, resulted in several innovations being ‘brought back’ to the US. To promote the bidirectional flow of learning and innovations, the Indiana CTSI reciprocal innovation program hosts annual meetings of multinational researchers and practitioners to identify shared health challenges, supports pilot grants for projects with reciprocal exchange and benefit, and produces educational and training materials for investigators. The transformative power of global health to address systemic health inequities embraces equitable and reciprocal partnerships with mutual benefit across countries and communities of academics, practitioners, and policymakers. Leveraging a long-standing partnership, the Indiana CTSI has built a reciprocal innovation program with promise to redefine global health for shared wellbeing at a global scale.
more »
« less
Advanced Studies Institute on Water Quality and Harmful Algal blooms in Lake Victoria, Kenya
A learning module for middle school science students created by an NSF-IRES funded program facilitated by BGSU, KiSII University, Technical University of Kenya, Kenya Marine Fisheries Research Institute and the African Center for Aquatic Research and Education
more »
« less
- Award ID(s):
- 1953468
- PAR ID:
- 10565899
- Publisher / Repository:
- Fort LeBoeuf School District, Erie PA
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This dataset comprises plant wax n-alkane chain length concentrations and C25-C35 relative abundances of 209 plant specimens from two Kenyan C3-dominated ecosystems, representing a wide range of plant functional types (PFTs). Plant samples were collected in 2018 from Mount Kenya National Park (n=122) and Kakamega National Forest (n=87). At Mount Kenya National Park, samples were collected along an elevational transect (~2400 m to ~3600 m above sea level) from five different ecotones: lower montane forest, bamboo zone, upper montane forest, ericaceous shrubland belt and Afroalpine moorland. Kakamega National Forest is ~1600m above sea level and samples were collected from an open glade, forest path edge, and closed canopy forest. All plant samples were identified to family level, most to genus or species level. Information on collection habitat, photosynthetic pathway, and plant functional type are included. The goal of this dataset was to assess n-alkane distributions for chemotaxonomic signals. Sample analysis took place at Lamont-Doherty Earth Observatory and Harvard University between 2022-2024. n-Alkane data were quantified using a gas chromatograph mass selective detector (GC-MSD) and a flame ionization detector (FID), and response factor corrections were calculated and applied to measured n-alkane peak areas in order to calculate corrected concentrations. The odd n-alkane C25-C35 concentrations were relativized to sum to 1 for the final relative abundance data. For more detailed information, please consult the associated manuscript on the n-alkane distributions and their chemotaxonomic significance: Tweedy et al., 2025.more » « less
-
Abstract Despite the increasing burden of dengue in Kenya and Africa, the introduction and expansion of the virus in the region remain poorly understood. The objective of this study is to examine the genetic diversity and evolutionary histories of dengue virus (DENV) serotypes 1 and 3 in Kenya and contextualize their circulation within circulation dynamics in the broader African region. Viral RNA was extracted from samples collected from a cohort of febrile patients recruited at clinical sites in Kenya from 2013 to 2022. Samples were tested by polymerase chain reaction (PCR) for DENV presence. Five DENV-positive samples were serotyped, and complete viral genomes for phylogenetic inference were obtained via sequencing on Illumina platforms. Sequences generated in our study were combined with global datasets of sequences, and Bayesian and maximum likelihood methods were used to infer phylogenetic trees and geographic patterns of spread with a focus on Kenya and Africa as a whole. Four new DENV-1 and one new DENV-3 genomes were successfully sequenced and combined with 328 DENV-1 and 395 DENV-3 genomes from elsewhere for phylogenetic analyses. The DENV-1 sequences from our study formed a monophyletic cluster with an inferred common ancestor in 2019 (most recent common ancestor 2019 and 95% high posterior density 2018–19), which was closely related to sequences from Tanzania. The single DENV-3 sequence clustered with sequences from Tanzania and Kenya, was collected between 2017 and 2019 and was related to recent outbreaks in the region. Phylogenetic trees resolved multiple clades of DENV-1 and DENV-3 concurrently circulating in Africa, introduced in the early-to mid-2000s. Three DENV-1 and four DENV-3 clades are highlighted, introduced between 2000 and 2015. Phylogeographic models suggest frequent, independent importations of DENV lineages into Kenya and Africa from East and South-East Asia via distinct geographic pathways. DENV-1 and DENV-3 evolutionary dynamics in Africa are characterized by the cocirculation of multiple recently introduced lineages. Circulating lineages are introduced via distinct geographic pathways that may be centered around regional nexus locations. Increased surveillance is required to identify key regional locations that drive spread, and dengue interventions should focus on interrupting spread at these locations.more » « less
-
null (Ed.)Abstract Stigma toward people living with HIV/AIDS (PLWHA) has impeded the response to the disease across the world. Widespread stigma leads to poor adherence of preventative measures while also causing PLWHA to avoid testing and care, delaying important treatment. Stigma is clearly a hugely complex construct. However, it can be broken down into components which include internalized stigma (how people with the trait feel about themselves) and enacted stigma (how a community reacts to an individual with the trait). Levels of HIV/AIDS-related stigma are particularly high in sub-Saharan Africa, which contributed to a surge in cases in Kenya during the late twentieth century. Since the early twenty-first century, the United Nations and governments around the world have worked to eliminate stigma from society and resulting public health education campaigns have improved the perception of PLWHA over time, but HIV/AIDS remains a significant problem, particularly in Kenya. We take a data-driven approach to create a time-dependent stigma function that captures both the level of internalized and enacted stigma in the population. We embed this within a compartmental model for HIV dynamics. Since 2000, the population in Kenya has been growing almost exponentially and so we rescale our model system to create a coupled system for HIV prevalence and fraction of individuals that are infected that seek treatment. This allows us to estimate model parameters from published data. We use the model to explore a range of scenarios in which either internalized or enacted stigma levels vary from those predicted by the data. This analysis allows us to understand the potential impact of different public health interventions on key HIV metrics such as prevalence and disease-related death and to see how close Kenya will get to achieving UN goals for these HIV and stigma metrics by 2030.more » « less
-
Thrash, J Cameron (Ed.)Metagenome-assembled genomes were generated for two xenic cyanobacterial strains collected from aquatic sources in Kenya and sequenced by NovaSeq S4. Here, we report the classification and genome statistics of Microcystis panniformis WG22 and Limnospira fusiformis.more » « less
An official website of the United States government

