null
                            (Ed.)
                        
                    
            
                            Understanding the dominant soil nitrogen (N) cycling processes in southern Appalachian forests is crucial for predicting ecosystem responses to changing N deposition and climate. The role of anaerobic nitrogen cycling processes in well-aerated soils has long been questioned, and recent N cycling research suggests it needs to be re-evaluated. We assessed gross and potential rates of soil N cycling processes, including mineralization, nitrification, denitrification, nitrifier denitrification, and dissimilatory nitrate reduction to ammonium (DNRA) in sites representing a vegetation and elevation gradient in the U.S. Department of Agriculture (USDA) Forest Service Experimental Forest, Coweeta Hydrologic Laboratory in southwestern North Carolina, USA. N cycling processes varied among sites, with gross mineralization and nitrification being greatest in high-elevation northern hardwood forests. Gaseous N losses via nitrifier denitrification were common in all ecosystems but were greatest in northern hardwood. Ecosystem N retention via DNRA (nitrification-produced NO3 reduced to NH4) ranged from 2% to 20% of the total nitrification and was highest in the mixed-oak forest. Our results suggest the potential for gaseous N losses through anaerobic processes (nitrifier denitrification) are prevalent in well-aerated forest soils and may play a key role in ecosystem N cycling. 
                        more » 
                        « less   
                     An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    