skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Integrating chemistry, fluid flow, and mechanics to drive spontaneous formation of three-dimensional (3D) patterns in anchored microstructures
Enzymatic reactions in solution drive the convection of confined fluids throughout the enclosing chambers and thereby couple the processes of reaction and convection. In these systems, the energy released from the chemical reactions generates a force, which propels the fluids’ spontaneous motion. Here, we use theoretical and computational modeling to determine how reaction-convection can be harnessed to tailor and control the dynamic behavior of soft matter immersed in solution. Our model system encompasses an array of surface-anchored, flexible posts in a millimeter-sized, fluid-filled chamber. Selected posts are coated with enzymes, which react with dissolved chemicals to produce buoyancy-driven fluid flows. We show that these chemically generated flows exert a force on both the coated (active) and passive posts and thus produce regular, self-organized patterns. Due to the specificity of enzymatic reactions, the posts display controllable kaleidoscopic behavior where one regular pattern is smoothly morphed into another with the addition of certain reactants. These spatiotemporal patterns also form “fingerprints” that distinctly characterize the system, reflecting the type of enzymes used, placement of the enzyme-coated posts, height of the chamber, and bending modulus of the elastic posts. The results reveal how reaction-convection provides concepts for designing soft matter that readily switches among multiple morphologies. This behavior enables microfluidic devices to be spontaneously reconfigured for specific applications without construction of new chambers and the fabrication of standalone sensors that operate without extraneous power sources.  more » « less
Award ID(s):
2234135
PAR ID:
10565982
Author(s) / Creator(s):
; ;
Publisher / Repository:
NSF PAR
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
121
Issue:
11
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Catalyst-coated, hard particles can spontaneously generate fluid flows, which, in turn, propel the particles through the fluid. If the catalyst-coated object were a deformable sheet, then the self-generated flows could affect not only the sheet’s motion but also its shape. By developing models that capture the interrelated chemical, hydrodynamic, and mechanical interactions, we uncover novel behavior emerging from the previously unstudied coupling between active, soft sheets and the surrounding fluid. The chemically generated flows “sculpt” the sheet into various forms that yield different functionalities, which can be tailored by modifying the sheet’s geometry, patterning the sheet’s surface with different catalysts, and using cascades of chemical reactions. These studies reveal how to achieve both spatial and temporal controls over the position and shape of active sheets and thus use the layers to autonomously and controllably trap soft objects, perform logic operations, and execute multistage processes in fluid-filled microchambers. 
    more » « less
  2. Complex fluid interfaces are commonplace in natural and engineered systems and a major topic in the fields of rheology and soft matter physics, providing boundary conditions for a system’s hydrodynamics. The relationship between structure and function dictates how constituents within complex fluids govern flow behavior via constituents changing conformation in response to the local microenvironment to minimize free energy. Both hydrodynamics, such as shear flow, and the presence of air–liquid interfaces are principal aspects of a complex fluid’s environment. The study of fluid interfaces coupled to bulk flows can be uniquely advanced through experimentation in microgravity, where surface tension containment can be achieved at relatively large length scales. This computational investigation assesses flow in the ring-sheared drop (RSD), a containerless biochemical reactor operating aboard the International Space Station for the study of complex fluids and soft matter physics. Specifically, the hydrodynamic effects of a generalized Boussinesq–Scriven interface with a shear-thinning surface shear viscosity are examined in flow regimes where the air–liquid interface remains coupled to the Newtonian bulk fluid. The results verify this interfacial model’s ability to affect system-wide hydrodynamics under specific parameter regimes, enabling future model validation with high-precision rheological measurements. 
    more » « less
  3. Signore, Giovanni (Ed.)
    Attaching enzymes to nanostructures has proven useful to the study of enzyme functionality under controlled conditions and has led to new technologies. Often, the utility and interest of enzyme-tethered nanostructures lie in how the enzymatic activity is affected by how the enzymes are arranged in space. Therefore, being able to conjugate enzymes to nanostructures while preserving the enzymatic activity is essential. In this paper, we present a method to conjugate single-stranded DNA to the enzyme urease while maintaining enzymatic activity. We show evidence of successful conjugation and quantify the variables that affect the conjugation yield. We also show that the enzymatic activity is unchanged after conjugation compared to the enzyme in its native state. Finally, we demonstrate the tethering of urease to nanostructures made using DNA origami with high site-specificity. Decorating nanostructures with enzymatically-active urease may prove to be useful in studying, or even utilizing, the functionality of urease in disciplines ranging from biotechnology to soft-matter physics. The techniques we present in this paper will enable researchers across these fields to modify enzymes without disrupting their functionality, thus allowing for more insightful studies into their behavior and utility. 
    more » « less
  4. Type I modular polyketide synthases are homodimeric multidomain assembly line enzymes that synthesize a variety of polyketide natural products by performing polyketide chain extension and β-keto group modification reactions. We determined the 2.4-angstrom-resolution x-ray crystal structure and the 3.1-angstrom-resolution cryo–electron microscopy structure of the Lsd14 polyketide synthase, stalled at the transacylation and condensation steps, respectively. These structures revealed how the constituent domains are positioned relative to each other, how they rearrange depending on the step in the reaction cycle, and the specific interactions formed between the domains. Like the evolutionarily related mammalian fatty acid synthase, Lsd14 contains two reaction chambers, but only one chamber in Lsd14 has the full complement of catalytic domains, indicating that only one chamber produces the polyketide product at any given time. 
    more » « less
  5. Enzymatic carbon‒carbon (C–C) bond formation reactions have become an effective and invaluable tool for designing new biological and medicinal molecules, often with asymmetric features. This review provides a systematic overview of key C–C bond formation reactions and enzymes, with the focus of reaction mechanisms and recent advances. These reactions include aldol reaction, Henry reaction, Knoevenagel condensation, Michael addition, Friedel-Crafts alkylation and acylation, Mannich reaction, Morita–Baylis–Hillman (MBH) reaction, Diels-Alder reaction, acyloin condensations via Thiamine Diphosphate (ThDP)-dependent enzymes, oxidative and reductive C–C bond formation, C–C bond formation through C1 resource utilization, radical enzymes for C–C bond formation, and other C–C bond formation reactions. 
    more » « less