On June 20, 2021, the Northern Highland Fishery Research Area (NHFRA) celebrated its 75th anniversary of continuous fisheries population monitoring and compulsory angler creel census on five lakes in northern Wisconsin. In 1946, five lakes were designated as experimental fisheries research lakes and all anglers have been required to adhere to the compulsory creel census to record catch information. We review the history of the NHFRA, its role in evaluating experimental regulations, how data derived from the NHFRA were paramount in developing a critical Walleye Sander vitreus management plan for a joint tribal subsistence and recreational angling fishery, discuss the NHFRA as a training ground for early career fisheries professionals, and speculate on its future. By learning from the past and adapting to new challenges and emerging fisheries research needs, the NHFRA is poised to add to its 75-year legacy of research and training to inform science-based decision making and to prepare generations of new fisheries professionals. The 75-year history of the NHFRA exemplifies the importance of adaptation, long-term data, establishing sentinel lakes for observations of environmental change, field stations, and partnerships for successful fisheries management.
more » « less- PAR ID:
- 10566198
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Fisheries
- Volume:
- 47
- Issue:
- 2
- ISSN:
- 0363-2415
- Format(s):
- Medium: X Size: p. 55-67
- Size(s):
- p. 55-67
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Recreational fisheries are social-ecological systems (SES), and knowledge of human dimensions coupled with ecology are critically needed to understand their system dynamics. Creel surveys, which typically occur in-person and on-site, serve as an important tool for informing fisheries management. Recreational fisheries creel data have the potential to inform large-scale understanding of social and ecological dynamics, but applications are currently limited by a disconnect between the questions posed by social-ecological researchers and the methods in which surveys are conducted. Although innovative use of existing data can increase understanding of recreational fisheries as SES, creel surveys should also adapt to changing information needs. These opportunities include using the specific temporal and spatial scope of creel survey data, integrating these data with alternative data sources, and increasing human dimensions understanding. This review provides recommendations for adapting survey design, implementation, and analysis for SES-focused fisheries management. These recommendations are: (1) increasing human dimensions knowledge; (2) standardization of surveys and data; (3) increasing tools and training available to fisheries scientists; and (4) increasing accessibility and availability of data. Incorporation of human dimensions information into creel surveys will increase the ability of fisheries management to regulate these important systems from an integrated SES standpoint.more » « less
-
Abstract Recreational fisheries have high economic worth, valued at US$190 billion globally. An important, but underappreciated, secondary value of recreational catch is its role as a source of food. This contribution is poorly understood due to difficulty in estimating recreational harvest at spatial scales beyond a single system, as traditionally estimated from individual creel surveys. Here, we address this gap using 28-year creel surveys of ~300 Wisconsin inland lakes. We develop a statistical model of recreational harvest for individual lakes and then scale-up to unsurveyed lakes (3,769 lakes; 73% of statewide lake surface area). We generate a statewide estimate of recreational lake harvest of ~4,200 metric tons and an estimated annual angler consumption rate of ~1.1 kg, nearly equal to the total estimated United States per capita freshwater fish consumption. An important ecosystem service, recreational harvest makes significant contributions to human diets and plays an often-unheralded role in food security.
-
Abstract A network of marine reserves can enhance yield in depleted fisheries by protecting populations, particularly large, old spawners that supply larvae for interspersed fishing grounds. The ability of marine reserves to enhance sustainable fisheries is much less evident. We report empirical evidence of a marine reserve network improving yield regionally for a sustainable spiny lobster fishery, apparently through the spillover of adult lobsters and behavioral adaptation by the fishing fleet. Results of a Before-After, Control-Impact analysis found catch, effort, and Catch-Per-Unit Effort increased after the establishment of marine reserves in the northern region of the fishery where fishers responded by fishing intensively at reserve borders, but declined in the southern region where they vacated once productive fishing grounds. The adaptation of the northern region of the fishery may have been aided by a history of collaboration between fishers, scientists, and managers, highlighting the value of collaborative research and education programs for preparing fisheries to operate productively within a seascape that includes a large marine reserve network.
-
In southern New England, rapid ocean warming over the past two decades has caused substantial redistributions of fishes, invertebrates, and the fisheries they support. The rapid emergence of the warm water-tolerant Jonah crab (Cancer borealis) fishery, once discarded as bycatch from the now declining lobster fishery, illustrates a prime example of climate-adaptive shifts in southern New England fisheries. However, limited data exist on the basic life history of Jonah crabs, despite their growing economic and societal value. This hinders ocean management capacity to meet multiple ecological, economic, and socio-cultural goals of sustainable harvest. Off the southern coast of Rhode Island, Jonah crabs are currently harvested in two fishery zones (inshore and offshore) delineated as holdovers from the lobster management zones. Jonah crabs landed in the offshore fishing zone are significantly larger, on average, than those landed in the inshore fishing zone. This presentation gives an overview of a study developed to test the hypothesis that these size differences reflect ontogenetic migration of Jonah crabs from the inshore to offshore fishing zones. To do this, we developed seasonally resolved isoscapes (isotope maps) of the region, which revealed distinct geospatial gradients in environmental stable isotope values between inshore and offshore necessary to track potential movement of Jonah crabs between fishing zones. We then used stable isotope analysis of three Jonah crab tissues with differential metabolic turnover times: the carapace (reflecting residence one year ago), muscle (reflecting residence averaged over the last ~4 months), and hepatopancreas (reflecting residence averaged over the last ~4 weeks) to construct an “isotopic clock” of residence throughout the regional isoscapes. This work provides key data on critical life history characteristics of the Jonah crab through a collaborative effort by scientists at the University of Rhode Island and the Rhode Island Department of Environmental Management to inform management decisions on this emerging climate-adaptive fishery.more » « less
-
Abstract The central stock of northern anchovy (CSNA; Engraulis mordax), the most abundant small pelagic fish in the southern California Current, is key to ecosystem functions. We review drivers of its population dynamics in relation to management. Springtime upwelling intensity lagged by 2 years co-varied positively with CSNA biomass, as did the abundance of Pacific sardine (Sardinops sagax; weakly negative). CSNA population dynamics indicate the need for a multi-species stock assessment, but given serious challenges with modelling population collapse and recovery dynamics, and its moderate fisheries, we suggest that sensible management could be a simple 2-tier harvest control rule designed to emphasize the key trophic role of CSNA in the ecosystem while maintaining moderate socio-economic services. We recommend a monitoring fishery of no more than 5 KMT year−1 split between central and southern California when the stock falls below the long-term median abundance estimate of 380 KMT across the California portion of its range, and a catch limit of 25 KMT year−1 when the stock is above this reference point. This rule would be precautionary, serving to maintain the most important small pelagic forage in the ecosystem, various fisheries interests, and information streams when the population is in a collapsed state.more » « less