skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Metagenomic analysis of deep-sea bacterial communities in the Makassar and Lombok Straits
The extreme conditions of the deep-sea environment, including limited light, low oxygen levels, high pressure, and nutrient scarcity, create a natural habitat for deep-sea bacteria. These remarkable microorganisms have developed unique strategies to survive and adapt to their surroundings. However, research on the diversity of deep-sea bacteria, both culture-dependent and culture-independent, in Indonesian waters remains insufficient. This study focused on exploring the biodiversity of deep-sea bacteria, specifically in the Makassar and Lombok Strait, the main Indonesian throughflow pathway characterized by relatively fertile water, which serves as an important deep-sea region. High-throughput DNA sequencing of full-length 16S rRNA was employed to construct a genomic database. The results of the bioinformatic analysis revealed that two stations, 48 and 50 (Makassar Strait), exhibited a more similar community structure of deep-sea bacteria than did station 33 (Lombok Strait). Among the predominant phyla found at a depth of 1000 m, the top ten were Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Planctomycetes, Acidobacteria, Nitrospinae, Verrucomicrobia, Candidatus Melainabacteria, and Cyanobacteria. Furthermore, the genera Colwellia, Moritella, Candidatus Pelagibacter, Alteromonas, and Psychrobacter consistently appeared at all three stations, albeit with varying relative abundance values. These bacterial genera share common characteristics, such as psychrophilic, halophilic, and piezophilic tendencies, and are commonly found in deep-sea ecosystem. The environmental conditions at a depth of 1000 m were relatively stable, with an average pressure 10 MPa, temperature 4.68 °C, salinity 34.58 PSU, pH 8.06, chlorophyll-a 0.29 µg/L, nitrate 3.19 µmol/L, phosphate 6.32 µmol/L and dissolved oxygen (DO) 2.90 mg/L. The bacterial community structures at the three sampling stations located at the same depth (1000 m) exhibited similarities, as indicated by the closely aligned similarity index values.  more » « less
Award ID(s):
2242151
PAR ID:
10566228
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Corporate Creator(s):
Editor(s):
NA
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Scientific Reports
Volume:
14
Issue:
1
ISSN:
2045-2322
Page Range / eLocation ID:
25472
Subject(s) / Keyword(s):
Indonesian throughflow 16S rRNA gene Diversity Deep-sea bacteria Proteobacteria
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sergio Stefanni (Ed.)
    Zooplankton diversity in the deep “midnight zone” (>1000 m), where sunlight does not reach, remains largely unknown. Uncovering such diversity has been challenging because of the major difficulties in sampling deep pelagic fauna and identifying many (unknown) species that belong to these complex swimmer assemblages. In this study, we evaluated zooplankton diversity using two taxonomic marker genes: mitochondrial cytochrome oxidase subunit 1 (COI) and nuclear 18S ribosomal RNA (18S). We collected samples from plankton net tows, ranging from the surface to a depth of 5000 m above the Atacama Trench in the Southeast Pacific. Our study aimed to assess the zooplankton diversity among layers from the upper 1000 m to the ultra-deep abyssopelagic zone to test the hypothesis of decreasing diversity with depth resulting from limited carbon sources. The results showed unique, highly vertically structured communities within the five depth strata sampled, with maximal species richness observed in the upper bathypelagic layer (1000–2000 m). The high species richness of zooplankton (>750 OTUS) at these depths was higher than that found in the upper 1000 m. The vertical diversity trend exhibited a pattern similar to the well-known vertical pattern described for the benthic system. However, a large part of this diversity was either unknown (>50%) or could not be assigned to any known species in current genetic diversity databases. DNA analysis showed that the Calanoid copepods, mostly represented bySubeucalanus monachus, the Euphausiacea,Euphausia mucronata, and the halocypridade,Paraconchoecia dasyophthalma, dominated the community. Water column temperature, dissolved oxygen, particulate carbon, and nitrogen appeared to be related to the observed vertical diversity pattern. Our findings revealed rich and little-known zooplankton diversity in the deep sea, emphasizing the importance of further exploration of this ecosystem to conserve and protect its unique biota. 
    more » « less
  2. Abstract. Oceanic bacterial communities process a major fraction of marine organiccarbon. A substantial portion of this carbon transformation occurs in themesopelagic zone, and a further fraction fuels bacteria in the bathypelagiczone. However, the capabilities and limitations of the diverse microbialcommunities at these depths to degrade high-molecular-weight (HMW) organicmatter are not well constrained. Here, we compared the responses of distinctmicrobial communities from North Atlantic epipelagic (0–200 m), mesopelagic(200–1000 m), and bathypelagic (1000–4000 m) waters at two open-oceanstations to the same input of diatom-derived HMW particulate and dissolvedorganic matter. Microbial community composition and functional responses tothe input of HMW organic matter – as measured by polysaccharide hydrolase,glucosidase, and peptidase activities – were very similar between thestations, which were separated by 1370 km but showed distinct patterns withdepth. Changes in microbial community composition coincided with changes inenzymatic activities: as bacterial community composition changed in responseto the addition of HMW organic matter, the rate and spectrum of enzymaticactivities increased. In epipelagic mesocosms, the spectrum of peptidaseactivities became especially broad and glucosidase activities were veryhigh, a pattern not seen at other depths, which, in contrast, were dominatedby leucine aminopeptidase and had much lower peptidase and glucosidase ratesin general. The spectrum of polysaccharide hydrolase activities was enhancedparticularly in epipelagic and mesopelagic mesocosms, with fewerenhancements in rates or spectrum in bathypelagic waters. The timing andmagnitude of these distinct functional responses to the same HMW organicmatter varied with depth. Our results highlight the importance of residencetimes at specific depths in determining the nature and quantity of organicmatter reaching the deep sea. 
    more » « less
  3. Abstract Marine cable bacteria (Candidatus Electrothrix) and large colorless sulfur‐oxidizing bacteria (e.g., Beggiatoaceae) are widespread thiotrophs in coastal environments but may exert different influences on biogeochemical cycling. Yet, the factors governing their niche partitioning remain poorly understood. To map their distribution and evaluate their growth constraints in a natural setting, we examined surface sediments across seasons at two sites with contrasting levels of seasonal oxygen depletion in Chesapeake Bay using microscopy coupled with 16S rRNA gene amplicon sequencing and biogeochemical characterization. We found that cable bacteria, dominated by a single phylotype closely affiliated toCandidatus Electrothrixcommunis, flourished during winter and spring at a central channel site which experiences summer anoxia. Here, cable bacteria density was positively correlated with surface sediment chlorophyll, a proxy of phytodetritus sedimentation. Cable bacteria were also present with a lower areal density at an adjacent shoal site which supports bioturbating macrofauna. Beggiatoaceae were more abundant at this site, where their biomass was positively correlated with sediment respiration, but additionally potentially inhibited by sulfide accumulation which was evident during one summer. A springtime phytodetritus sedimentation event was associated with a proliferation of Beggiatoaceae and multipleCandidatus Electrothrixphylotypes, with cable bacteria reaching 1000 m length cm−2. These observations indicate the potential impact of a spring bloom in driving a hot moment of cryptic sulfur cycling. Our results suggest complex interactions between benthic thiotroph populations, with bioturbation and seasonal oscillations in bottom water dissolved oxygen, sediment sulfide, and organic matter influx as important drivers of their distribution. 
    more » « less
  4. null (Ed.)
    Primary productivity occurs throughout the deep euphotic zone of the oligotrophic South Pacific Gyre (SPG), fueled largely by the regeneration of nutrients and thus recycling of organic matter. We investigated the heterotrophic capabilities of the SPG’s bacterial communities by examining their ability to process polysaccharides, an important component of marine organic matter. We focused on the initial step of organic matter degradation by measuring the activities of extracellular enzymes that hydrolyze six different polysaccharides to smaller sizes. This process can occur by two distinct mechanisms: “selfish uptake,” in which initial hydrolysis is coupled to transport of large polysaccharide fragments into the periplasmic space of bacteria, with little to no loss of hydrolysis products to the external environment, and “external hydrolysis,” in which low molecular weight (LMW) hydrolysis products are produced in the external environment. Given the oligotrophic nature of the SPG, we did not expect high enzymatic activity; however, we found that all six polysaccharides were hydrolyzed externally and taken up selfishly in the central SPG, observations that may be linked to a comparatively high abundance of diatoms at the depth and location sampled (75 m). At the edge of the gyre and close to the center of the gyre, four of six polysaccharides were externally hydrolyzed, and a lower fraction of the bacterial community showed selfish uptake. One polysaccharide (fucoidan) was selfishly taken up without measurable external hydrolysis at two stations. Additional incubations of central gyre water from depths of 1,250 and 2,800 m with laminarin (an abundant polysaccharide in the ocean) led to extreme growth of opportunistic bacteria ( Alteromonas) , as tracked by cell counts and next generation sequencing of the bacterial communities. These Alteromonas appear to concurrently selfishly take up laminarin and release LMW hydrolysis products. Overall, extracellular enzyme activities in the SPG were similar to activities in non-oligotrophic regions, and a considerable fraction of the community was capable of selfish uptake at all three stations. A diverse set of bacteria responded to and are potentially important for the recycling of organic matter in the SPG. 
    more » « less
  5. Heterotrophic bacteria initiate the degradation of high molecular weight organic matter by producing an array of extracellular enzymes to hydrolyze complex organic matter into sizes that can be taken up into the cell. These bacterial communities differ spatially and temporally in composition, and potentially also in their enzymatic complements. Previous research has shown that particle-associated bacteria can be considerably more active than bacteria in the surrounding bulk water, but most prior studies of particle-associated bacteria have been focused on the upper ocean - there are few measurements of enzymatic activities of particle-associated bacteria in the mesopelagic and bathypelagic ocean, although the bacterial communities in the deep are dependent upon degradation of particulate organic matter to fuel their metabolism. We used a broad suite of substrates to compare the glucosidase, peptidase, and polysaccharide hydrolase activities of particle-associated and unfiltered seawater microbial communities in epipelagic, mesopelagic, and bathypelagic waters across 11 stations in the western North Atlantic. We concurrently determined bacterial community composition of unfiltered seawater and of samples collected via gravity filtration (>3 μm). Overall, particle-associated bacterial communities showed a broader spectrum of enzyme activities compared with unfiltered seawater communities. These differences in enzymatic activities were greater at offshore than at coastal locations, and increased with increasing depth in the ocean. The greater differences in enzymatic function measured on particles with depth coincided with increasing differences in particle-associated community composition, suggesting that particles act as ‘specialty centers’ that are essential for degradation of organic matter even at bathypelagic depths. 
    more » « less