skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reinforcing mindware or supporting cognitive reflection: Testing two strategies for addressing a persistent learning challenge in the context of air resistance
In this study, we have explored the effectiveness of two instructional approaches in the context of the motion of objects falling at terminal speed in the presence of air resistance. We ground these instructional approaches in dual-process theories of reasoning, which assert that human cognition relies on two thinking processes. Dual-process theories suggest multiple possible avenues by which instruction might impact student reasoning. In this paper, we compare two possible instructional approaches: one designed to reinforce the normative approach (improving the outputs of the intuitive process) and another that guides students to reflect on and analyze their initial ideas (supporting the analytic process). The results suggest that for students who have already demonstrated a minimum level of requisite knowledge, instruction that supports analysis of their likely intuitive mental model leads to greater learning benefits in the short term than instruction that focuses solely on providing practice with the normative mindware. These results have implications for the design of instructional materials and help to demonstrate how dual-process theories can be leveraged to explain the success of existing research-based materials. Published by the American Physical Society2024  more » « less
Award ID(s):
1821400 1821390 1821561 1821123 1821511
PAR ID:
10566287
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review Physics Education Research
Volume:
20
Issue:
2
ISSN:
2469-9896
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dual-process theories of reasoning suggest that humans reason using two processes often referred to as process 1 (heuristic) and process 2 (analytic). When presented with a situation requiring any sort of reasoning or decision making, process 1 automatically engages and generates an initial mental model to address the situation. Process 2 may or may not be engaged to assess the initial model as a plausible solution. In a study by Kryjevskaia , a “screening” question regarding a pulse on a spring aimed to identify students with relevant content knowledge who nevertheless seemed to rely on process 1 when answering a subsequent “target” question. The study was offered as evidence that dual-process theories can explain some discrepancies in student responses to related questions. The study described here assesses the same pair of questions for their ability to distinguish between incorrect answers that stem from inadequate conceptual understanding and those that stem from reasoning approaches. We use Frederick’s cognitive reflection test as part of this analysis. Our results largely support a dual-process-theories perspective of student reasoning. Published by the American Physical Society2025 
    more » « less
  2. Over the course of the introductory calculus-based physics course, students are often expected to build conceptual understanding and develop and refine skills in problem solving and qualitative inferential reasoning. Many of the research-based materials developed over the past 30 years by the physics education research community use sequences of scaffolded questions to step students through a qualitative inferential reasoning chain. It is often tacitly assumed that, in addition to building conceptual understanding, such materials improve qualitative reasoning skills. However, clear documentation of the impact of such materials on qualitative reasoning skills is critical. New methodologies are needed to better study reasoning processes and to disentangle, to the extent possible, processes related to physics content from processes general to all human reasoning. As a result, we have employed network analysis methodologies to examine student responses to reasoning-related tasks in order to gain deeper insight into the nature of student reasoning in physics. In this paper, we show that network analysis metrics are both interpretable and valuable when applied to student reasoning data generated from . We also demonstrate that documentation of improvements in the articulation of specific lines of reasoning can be obtained from a network analysis of responses to reasoning chain construction tasks. Published by the American Physical Society2024 
    more » « less
  3. Concepts and practices surrounding measurement uncertainty are vital knowledge for physicists and are often emphasized in undergraduate physics laboratory courses. We have previously developed a research-based assessment instrument—the Survey of Physics Reasoning on Uncertainty Concepts in Experiments (SPRUCE)—to examine student proficiency with measurement uncertainty along a variety of axes, including sources of uncertainty, handling of uncertainty, and distributions and repeated measurements. We present here initial results from the assessment representing over 1500 students from 20 institutions. We analyze students’ performance pre- and postinstruction in lab courses and examine how instruction impacts students with different majors and gender. We find that students typically excel in certain areas, such as reporting the mean of a distribution as their result, while they struggle in other areas, such as comparing measurements with uncertainty and correctly propagating errors using formulas. Additionally, we find that the importance that an instructor places in certain areas of measurement uncertainty is uncorrelated with student performance in those areas. Published by the American Physical Society2024 
    more » « less
  4. [This paper is part of the Focused Collection in Investigating and Improving Quantum Education through Research.] Instruction in quantum mechanics is becoming increasingly important as the field is not only a key part of modern physics research but is also important for emerging technologies. However, many students regard quantum mechanics as a particularly challenging subject, in part because it is considered very mathematical and abstract. One potential way to help students understand and contextualize unintuitive quantum ideas is to provide them opportunities to work with physical apparatus demonstrating these phenomena. In order to understand how working with quantum experiments affects students’ reasoning, we performed think-aloud lab sessions with two pairs of students as they worked through a sequence of quantum optics experiments that demonstrated particle-wave duality of photons. Analyzing the in-the-moment student thinking allowed us to identify the resources students activated while reasoning through the experimental evidence of single-photon interference, as well as student ideas about what parts of the experiments were quantum versus classical. This work will aid instructors in helping their students construct an understanding of these topics from their own ideas and motivate future investigations into the use of hands-on opportunities to facilitate student learning about quantum mechanics. Published by the American Physical Society2024 
    more » « less
  5. The Survey of Physics Reasoning on Uncertainty Concepts in Experiments (SPRUCE) was designed to measure students’ proficiency with measurement uncertainty concepts and practices across ten different assessment objectives to help facilitate the improvement of laboratory instruction focused on this important topic. To ensure the reliability and validity of this assessment, we conducted a comprehensive statistical analysis using classical test theory. This analysis includes an evaluation of the test as a whole, as well as an in-depth examination of individual items and assessment objectives. We make use of a previously reported on scoring scheme involving pairing items with assessment objectives, creating a new unit for statistical analysis referred to as a “couplet.” The findings from our analysis provide evidence for the reliability and validity of SPRUCE as an assessment tool for undergraduate physics labs. This increases both instructors’ and researchers’ confidence in using SPRUCE for measuring students’ proficiency with measurement uncertainty concepts and practices to ultimately improve laboratory instruction. Additionally, our results using couplets and assessment objectives demonstrate how these can be used with traditional classic test theory analysis. Published by the American Physical Society2024 
    more » « less