skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on October 12, 2025

Title: Learning Granular Media Avalanche Behavior for Indirectly Manipulating Obstacles on a Granular Slope
Legged robot locomotion on sand slopes is challenging due to the complex dynamics of granular media and how the lack of solid surfaces can hinder locomotion. A promising strategy, inspired by ghost crabs and other organisms in nature, is to strategically interact with rocks, debris, and other obstacles to facilitate movement. To provide legged robots with this ability, we present a novel approach that leverages avalanche dynamics to indirectly manipulate objects on a granular slope. We use a Vision Transformer (ViT) to process image representations of granular dynamics and robot excavation actions. The ViT predicts object movement, which we use to determine which leg excavation action to execute. We collect training data from 100 real physical trials and, at test time, deploy our trained model in novel settings. Experimental results suggest that our model can accurately predict object movements and achieve a success rate ≥ 80% in a variety of manipulation tasks with up to four obstacles, and can also generalize to objects with different physics properties. To our knowledge, this is the first paper to leverage granular media avalanche dynamics to indirectly manipulate objects on granular slopes.  more » « less
Award ID(s):
2240075
PAR ID:
10566300
Author(s) / Creator(s):
; ;
Publisher / Repository:
8th Annual Conference on Robot Learning
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Much of the Earth and many surfaces of extraterrestrial bodies are composed of non-cohesive particulate matter. Locomoting on such granular terrain is challenging for common robotic devices, either wheeled or legged. In this work, we discover a robust alternative locomotion mechanism on granular media-generating movement via self-vibration. To demonstrate the effectiveness of this locomotion mechanism, we develop a cube-shaped robot with an embedded vibratory motor and conduct systematic experiments on granular terrains of various particle properties and slopes. We investigate how locomotion changes as a function of vibration frequency/intensity on such granular terrains. Compared to hard surfaces, we find such a vibratory locomotion mechanism enables the robot to move faster, and more stably on granular surfaces, facilitated by the interaction between the body and surrounding grains. We develop a numerical simulation of a vibrating single cube on granular media, enabling us to justify our hypothesis that the cube achieves locomotion through the oscillations excited at a distance from the cube’s center of mass. The simplicity in structural design and controls of this robotic system indicates that vibratory locomotion can be a valuable alternative way to produce robust locomotion on granular terrains. We further demonstrate that such cube-shaped robots can be used as modular units for vibratory robots with capabilities of maneuverable forward and turning motions, showing potential practical scenarios for robotic systems. 
    more » « less
  2. This paper describes a new type of compliant and configurable soft robot, a boundary-constrained swarm. The robot consists of a sealed flexible membrane that constrains both a number of mobile robotic subunits and passive granular material. The robot can change the volume fraction of the sealed membrane by applying a vacuum, which gives the robot the ability to operate in two distinct states: compliant and jammed. The compliant state allows the robot to surround and conform to objects or pass through narrow corridors. Jamming allows the robot to form a desired shape; grasp, (a) manipulate, and exert relatively high forces on external objects; and achieve relatively higher locomotion speeds. Locomotion is achieved with a combination of whegs (wheeled legs) and vibration motors that are located on the robotic subunits. The paper describes the mechanical design of the robot, the control methodology, and its object handling capability. 
    more » « less
  3. Recent studies on quadruped robots have focused on either locomotion or mobile manipulation using a robotic arm. However, legged robots can manipulate large objects using non-prehensile manipulation primitives, such as planar pushing, to drive the object to the desired location. This paper presents a novel hierarchical model predictive control (MPC) for contact optimization of the manipulation task. Using two cascading MPCs, we split the loco-manipulation problem into two parts: the first to optimize both contact force and contact location between the robot and the object, and the second to regulate the desired interaction force through the robot locomotion. Our method is successfully validated in both simulation and hardware experiments. While the baseline locomotion MPC fails to follow the desired trajectory of the object, our proposed approach can effectively control both object's position and orientation with minimal tracking error. This capability also allows us to perform obstacle avoidance for both the robot and the object during the loco-manipulation task. 
    more » « less
  4. In recent years, the field of legged robotics has seen growing interest in enhancing the capabilities of these robots through the integration of articulated robotic arms. However, achieving successful loco-manipulation, especially involving interaction with heavy objects, is far from straightforward, as object manipulation can introduce substantial disturbances that impact the robot’s locomotion. This paper presents a novel framework for legged loco-manipulation that considers whole-body coordination through a hierarchical optimization-based control framework. First, an online manipulation planner computes the manipulation forces and manipulated object task-based reference trajectory. Then, pose optimization aligns the robot’s trajectory with kinematic constraints. The resultant robot reference trajectory is executed via a linear MPC controller incorporating the desired manipulation forces into its prediction model. Our approach has been validated in simulation and hardware experiments, highlighting the necessity of whole-body optimization compared to the baseline locomotion MPC when interacting with heavy objects. Experimental results with Unitree Aliengo, equipped with a custom-made robotic arm, showcase its ability to lift and carry an 8kg payload and manipulate doors. 
    more » « less
  5. Terrain irregularities in natural environments present mobility challenges for autonomous robots and vehicles. Loosely consolidated sandy slopes flow unpredictably when perturbed, often leading to locomotion failure. Systematic experiments with various robot morphologies on flowable terrains feature open‐loop quasistatic gait strategies that remodel the terrain to aid locomotor kinematics. On a sloped terrain of granular media near the critical angle, a laboratory‐scale rover robot induces a flow via a localized fluidization gait to remodel local terrain and succeed in locomotion. A Bayesian optimization machine learning approach that modulates this gait strategy then finds a pattern of selectively fluidizing and solidifying terrain to climb slopes rapidly. In a biped walker robot, a cleated foot design dynamically manipulates the stress fields of flowable slopes. The deeply submerged cleats remodel the shear response of the material by creating jammed regions behind them which then improve forward progression by reducing slip when compared to a flat foot. The “robophysics” approach of systematic experiments exploring terrain reconfiguration combined with future machine learning models of flowable terrain evolution can augment gait discovery for future robots. 
    more » « less