Safe control designs for robotic systems remain challenging because of the difficulties of explicitly solving optimal control with nonlinear dynamics perturbed by stochastic noise. However, recent technological advances in computing devices enable online optimization or sampling-based methods to solve control problems. For example, Control Barrier Functions (CBFs) have been proposed to numerically solve convex optimization problems that ensure the control input to stay in the safe set. Model Predictive Path Integral (MPPI) control uses forward sampling of stochastic differential equations to solve optimal control problems online. Both control algorithms are widely used for nonlinear systems because they avoid calculating the derivatives of the nonlinear dynamic functions. In this paper, we use Stochastic Control Barrier Functions (SCBFs) constraints to limit sample regions in the samplingbased algorithm, ensuring safety in a probabilistic sense and improving sample efficiency with a stochastic differential equation. We also show that our algorithm needs fewer samples than the original MPPI algorithm does by providing a sampling complexity analysis.
more »
« less
This content will become publicly available on December 16, 2025
Data-Driven Permissible Safe Control with Barrier Certificates
This paper introduces a method of identifying a maximal set of safe strategies from data for stochastic systems with unknown dynamics using barrier certificates. The first step is learning the dynamics of the system via Gaussian Process (GP) regression and obtaining probabilistic errors for this estimate. Then, we develop an algorithm for constructing piecewise stochastic barrier functions to find a maximal permissible strategy set using the learned GP model, which is based on sequentially pruning the worst controls until a maximal set is identified. The permissible strategies are guaranteed to maintain probabilistic safety for the true system. This is especially important for learned systems, because a rich strategy space enables additional data collection and complex behaviors while remaining safe. Case studies on linear and nonlinear systems demonstrate that increasing the size of the dataset for learning grows the permissible strategy set.
more »
« less
- Award ID(s):
- 2039062
- PAR ID:
- 10566405
- Publisher / Repository:
- IEEE Conference on Decision and Control (CDC)
- Date Published:
- Format(s):
- Medium: X
- Location:
- Milan, Italy
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this work, we consider the problem of learning a reduced-order model of a high-dimensional stochastic nonlinear system with control inputs from noisy data. In particular, we develop a hybrid parametric/nonparametric model that learns the “average” linear dynamics in the data using dynamic mode decomposition with control (DMDc) and the nonlinearities and model uncertainties using Gaussian process (GP) regression and compare it with total least-squares dynamic mode decomposition (tlsDMD), extended here to systems with control inputs (tlsDMDc). The proposed approach is also compared with existing methods, such as DMDconly and GP-only models, in two tasks: controlling the stochastic nonlinear Stuart–Landau equation and predicting the flowfield induced by a jet-like body force field in a turbulent boundary layer using data from large-scale numerical simulations.more » « less
-
null (Ed.)We present a control framework that enables safe simultaneous learning and control for systems subject to uncertainties. The two main constituents are contraction theory-based L1-adaptive (CL1) control and Bayesian learning in the form of Gaussian process (GP) regression. The CL1 controller ensures that control objectives are met while providing safety certificates. Furthermore, the controller incorporates any available data into GP models of uncertainties, which improves performance and enables the motion planner to achieve optimality safely. This way, the safe operation of the system is always guaranteed, even during the learning transients. Keywords: Safe Learning, Planning, Adaptive Control, Gaussian Process Regressionmore » « less
-
Abstract In this work, we consider the problem of learning a reduced-order model of a high-dimensional stochastic nonlinear system with control inputs from noisy data. In particular, we develop a hybrid parametric/nonparametric model that learns the “average” linear dynamics in the data using dynamic mode decomposition with control (DMDc) and the nonlinearities and model uncertainties using Gaussian process (GP) regression and compare it with total least-squares dynamic mode decomposition (tlsDMD), extended here to systems with control inputs (tlsDMDc). The proposed approach is also compared with existing methods, such as DMDc-only and GP-only models, in two tasks: controlling the stochastic nonlinear Stuart–Landau equation and predicting the flowfield induced by a jet-like body force field in a turbulent boundary layer using data from large-scale numerical simulations.more » « less
-
Abstract We describe a stochastic, dynamical system capable of inference and learning in a probabilistic latent variable model. The most challenging problem in such models—sampling the posterior distribution over latent variables—is proposed to be solved by harnessing natural sources of stochasticity inherent in electronic and neural systems. We demonstrate this idea for a sparse coding model by deriving a continuous-time equation for inferring its latent variables via Langevin dynamics. The model parameters are learned by simultaneously evolving according to another continuous-time equation, thus bypassing the need for digital accumulators or a global clock. Moreover, we show that Langevin dynamics lead to an efficient procedure for sampling from the posterior distribution in the L0 sparse regime, where latent variables are encouraged to be set to zero as opposed to having a small L1 norm. This allows the model to properly incorporate the notion of sparsity rather than having to resort to a relaxed version of sparsity to make optimization tractable. Simulations of the proposed dynamical system on both synthetic and natural image data sets demonstrate that the model is capable of probabilistically correct inference, enabling learning of the dictionary as well as parameters of the prior.more » « less
An official website of the United States government
