The macro-porous ceramics has promising durability and thermal insulation performances. A cost-effective and scalable additive manufacturing technique for the fabrication of macro-porous ceramics, with a facile approach to control the printed porosity is reported in the paper. Several ceramic inks were prepared, the foaming agent was used to generate gaseous bubbles in the ink, followed by the direct ink writing and the ambient-pressure and room-temperature drying to create the three-dimensional geometries. The experimental studies were performed to optimize the printing quality. A set of studies revealed the optimal printing process parameters for printing the foamed ceramic ink with a high spatial resolution and fine surface quality. Varying the concentration of the foaming agent enabled the controllability of the structural porosity. The maximum porosity can reach 85%, with a crack-free internal porous structure. The tensile tests showed that the printed macro-porous ceramics have enhanced durability with the addition of fiber. With a high-fidelity 3D printing process and precise control of the porosity, the printed samples exhibited a low thermal conductivity and high mechanical strength.
This content will become publicly available on November 1, 2025
Advances in vat photopolymerization 3D printing have the potential to significantly improve the production of ceramic materials for electrochemical energy devices. Solid oxide fuel cells (SOFCs) and solid oxide electrolysis cells (SOECs) necessitate high‐resolution ceramic manufacturing methods, as well as precisely controlled porosity (≈20–40%) for optimal gas transport. Achieving a balance between this porosity and mechanical integrity, especially under thermal stress, remains a challenge. Herein, the successful fabrication of porous yttria‐stabilized zirconia (YSZ) ceramics using vat photopolymerization 3D printing is demonstrated, achieving porosities ranging from 6% to 40% and corresponding grain sizes of ≈80–550 nm. It is found that 3D‐printed YSZ with ≈33% porosity exhibited a Weibull modulus of
- Award ID(s):
- 2304846
- PAR ID:
- 10567064
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Advanced Engineering Materials
- Volume:
- 26
- Issue:
- 21
- ISSN:
- 1438-1656
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract The macro-porous ceramics has promising durability and thermal insulation performance. As porous ceramics find more and more applications across many industries, a cost-effective and scalable additive manufacturing technique for fabricating macro-porous ceramics is highly desirable. Herein, we reported a facile additive manufacturing approach to fabricate porous ceramics and control the printed porosity. Several printable ceramic inks were prepared, and the foaming agent was added to generate gaseous bubbles in the ink, followed by the direct ink writing and the ambient-pressure and room-temperature drying to create the three-dimensional geometries. A set of experimental studies were performed to optimize the printing quality. The results revealed the optimal process parameters for printing the foamed ceramic ink with a high spatial resolution and fine surface quality. Varying the concentration of the foaming agent enables the controllability of the structural porosity. The maximum porosity can reach 85%, with a crack-free internal porous structure. The tensile tests showed that the printed macro-porous ceramics possessed enhanced durability with the addition of fiber. With a high-fidelity three-dimensional (3D) printing process and the precise controllability of the porosity, we showed that the printed samples exhibited a remarkably low thermal conductivity and durable mechanical strength.more » « less
-
Emerging 3D-printed ceramics, though showing unprecedented application potential, are typically vulnerable to fractures and unable to heal at room temperature. By contrast, their natural counterparts, human bones, exhibit extraordinary self-healing capability through the activation of stem cell osteoblasts that precipitate mineralized calluses to enable interfacial healing at body temperature. Inspired by bones, we here employ bacteria as artificial osteoblasts to enable healing of 3D-printed porous ceramics at room temperature. The healing behavior relies on bacteria-initiated precipitation of calcium carbonate crystals to bridge fracture interfaces of ceramics. We show that bacteria-loaded porous ceramics can heal fracture interfaces to restore 100% mechanical strength at room temperature, and the healed strength is not compromised by heating up to 500 C or by corrosion of alkalis and oxidants. The bacteria-assisted healing mechanism is revealed by systematic control experiments, and the healing strength is explained by cohesive fracture modeling. We further incorporate this method into 3D-printed ceramics and demonstrate on-demand healing of ceramic dental crowns, ceramic water membranes, and ceramic lattices, and autonomous healing of ceramic armor. As the first-generation healing mechanism of 3D-printed ceramics, this paradigm is expected to open promising avenues for revolutionizing the low-damage-tolerance nature of existing 3D-printed ceramics.more » « less
-
Abstract Among various types of alternative energy devices, solid oxide fuel cells (SOFCs) operating at low temperatures (300‐600°C) show the advantages for both stationary and mobile electricity production. Proton‐conducting oxides as electrolyte materials play a critical role in the low‐temperature SOFCs (LT‐SOFCs). This review summarizes progress in proton‐conducting solid oxide electrolytes for LT‐SOFCs from materials to devices, with emphases on (1) strategies that have been proposed to tune the structures and properties of proton‐conducting oxides and ceramics, (2) techniques that have been employed for improving the performance of the protonic ceramic‐based SOFCs (known as PCFCs), and (3) challenges and opportunities in the development of proton‐conducting electrolyte‐based PCFCs.
-
3D printing is a versatile technology for creating objects with custom geometries and compositions and is increasingly employed for fabricating hybrid solid–liquid composites (SLCs). These composites, comprising solid matrices with integrated liquid components, showcase unique properties such as enhanced flexibility and improved thermal and electrical conductivities. This review focuses on methods to fabricate SLCs directly by different 3D printing techniques, e.g. without needing to backfill or impregnate a porous matrix. The techniques of extrusion, vat photopolymerization and material jetting combined with microfluidics, inkjet printing, vacuum filling and ultraviolet light curing to produce SLCs are emphasized. We also discuss the development of feedstocks, focusing on emulsions and polymer capsules as fillers, and analyze current literature to highlight their significance. The review culminates in a perspective on new directions, highlighting the potential of bicontinuous interfacially jammed emulsion gels (bijels) to facilitate the printing of continuous liquid pathways, alongside the importance of understanding ink formulation and stability. Concluding with future perspectives, we underline the transformative impact of 3D‐printed SLCs in diverse applications, signaling a significant advancement in the field.more » « less