skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pastoralism in the high tropical Andes: A review of the effect of grazing intensity on plant diversity and ecosystem services
Pastoralism is a land‐use system that involves the care and use of grazing livestock and has been more common in areas of low resource availability. In this review, we analyze the impact of pastoralism on biodiversity and ecosystem services across the tropical Andes. This region is the most extensive and populated tropical mountain region in the world and presents a high diversity of biomes, livestock types and management histories. Given that pastoralism is a main land use here, understanding its impacts is important for providing appropriate recommendations for sustainable management. LocationTropical Andes; Venezuela to the north of Argentina and Chile. MethodsTo understand these impacts, we performed a systematic literature search (August 2021) and obtained 103 articles. We created a conceptual framework to map how available research has contributed to our understanding of the main pastoral systems, their associated management strategies and the impact of different grazing intensities on vegetation cover/diversity and ecosystem services. ResultsWe found that research has focused on two leading pastoral systems in the region: bovines in the páramo biome of the northern Andes and camelids in the puna biome of the central Andes. We found important environmental impacts at high grazing intensities for both the puna camelid and páramo bovine pastoral systems, including a decrease in soil organic carbon and an increase in soil compaction, a decrease in above‐ground biomass, plant species richness, and graminoid cover, as well as clear changes in the growth‐form composition of vegetation. ConclusionsGiven these findings, we recommend coordinated research efforts using common methodologies, documenting current and previous land use, including stocking rates, and combining observational and experimental approaches to develop a more integrated understanding of pastoralism's impacts across this diverse and vulnerable region.  more » « less
Award ID(s):
2209352
PAR ID:
10567162
Author(s) / Creator(s):
; ; ;
Editor(s):
Durigan, Giselda
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Applied Vegetation Science
Volume:
27
Issue:
3
ISSN:
1402-2001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Peatlands store large amounts of carbon (C), a function potentially threatened by climate change. Peatlands composed of vascular cushion plants are widespread in the northern and central high Andes (páramo, wet and dry puna), but their C dynamics are hardly known. To understand the interplay of the main drivers of peatland C dynamics and to infer geographic patterns across the Andean regions, we addressed the following question: How do topography, hydrology, temperature, past climate variability, and vegetation influence the C dynamics of these peatlands? We summarize the available information on observed spatial and inferred temporal patterns of cushion peatland development in the tropical and subtropical Andes. Based on this, we recognize the following emerging patterns, which all need testing in further studies addressing spatial and temporal patterns of C accumulation: (1) Peatlands in dry climates and those in larger catchments receive higher sediment inputs than peatlands from wet puna and páramo and in small catchments. This results in peat stratigraphies intercalated with mineral layers and affects C accumulation by triggering vegetation changes. (2) High and constant water tables favor C accumulation. Seasonal water level fluctuations are higher in wet and dry puna, in comparison with páramo, leading to more frequent episodes of C loss in puna. (3) Higher temperatures favor C gain under high and constant water availability but also increase C loss under low and fluctuating water levels. (4) C accumulation has been variable through the Holocene, but several peatlands show a recent increase in C accumulation rates. (5) Vegetation affects C dynamics through species‐specific differences in productivity and decomposition rate. Because of predicted regional differences in global climate change manifestations (seasonality, permafrost behavior, temperature, precipitation regimes), cushion peatlands from the páramo are expected to mostly continue as C sinks for now, whereas those of the dry puna are more likely to turn to C sources as a consequence of increasing aridification. 
    more » « less
  2. Abstract Recent archaeological research in the Andes suggests that Indigenous herders carefully managed their environments through the modification of local hydrology and vegetation. However, the limited geographical scale of previous research makes it challenging to assess the range and prevalence of pastoralist land management in the Andes. In this article, the authors utilise large-scale, systematic imagery survey to examine the distribution and environmental contexts of corrals and pastoralist settlements in Huancavelica, Peru. Results indicate that corrals and pastoralist settlements cluster around colonial and present-day settlements and that a statistically significant relationship exists between pastoral infrastructure and perennial vegetation. This highlights the utility of remote survey for the identification of trans-regional patterns in herder-environment relationships that are otherwise difficult to detect. 
    more » « less
  3. Abstract ContextLand use history of urban forests impacts present-day soil structure, vegetation, and ecosystem function, yet is rarely documented in a way accessible to planners and land managers. ObjectivesTo (1) summarize historical land cover of present-day forest patches in Baltimore, MD, USA across land ownership categories and (2) determine whether social-ecological characteristics vary by historical land cover trajectory. MethodsUsing land cover classification derived from 1927 and 1953 aerial imagery, we summarized present-day forest cover by three land cover sequence classes: (1) Persistent forest that has remained forested since 1927, (2) Successional forest previously cleared for non-forest vegetation (including agriculture) that has since reforested, or (3) Converted forest that has regrown on previously developed areas. We then assessed present-day ownership and average canopy height of forest patches by land cover sequence class. ResultsMore than half of Baltimore City’s forest has persisted since at least 1927, 72% since 1953. About 30% has succeeded from non-forest vegetation during the past century, while 15% has reverted from previous development. A large proportion of forest converted from previous development is currently privately owned, whereas persistent and successional forest are more likely municipally-owned. Successional forest occurred on larger average parcels with the fewest number of distinct property owners per patch. Average tree canopy height was significantly greater in patches of persistent forest (mean = 18.1 m) compared to canopy height in successional and converted forest patches (16.6 m and 16.9 m, respectively). ConclusionsHistorical context is often absent from urban landscape ecology but provides information that can inform management approaches and conservation priorities with limited resources for sustaining urban natural resources. Using historical landscape analysis, urban forest patches could be further prioritized for protection by their age class and associated ecosystem characteristics. 
    more » « less
  4. In the DhofarMountains ofOman stakeholders are concerned about the social and ecological sustainability of pastoralism. In this study we used interviews with pastoralists to examine the prevailing drivers of pastoralism and how they are changing. We find that people are committed to pastoralism for sociocultural reasons but also that this commitment is under pressure because of husbandry costs and changing values. We find that capital investment in feedstuff enables pastoralists to overcome the densitydependent regulation of livestock populations. However, high production costs deter investment in marketing and commercialization, and there is little off take of local livestock. Our study reveals how pastoral values, passed down within households, motivate pastoralists in the face of high husbandry costs, modernization and social change. 
    more » « less
  5. Abstract AimClimate change is transforming mountain summit plant communities worldwide, but we know little about such changes in the High Andes. Understanding large‐scale patterns of vegetation changes across the Andes, and the factors driving these changes, is fundamental to predicting the effects of global warming. We assessed trends in vegetation cover, species richness (SR) and community‐level thermal niches (CTN) and tested whether they are explained by summits' climatic conditions and soil temperature trends. LocationHigh Andes. Time periodBetween 2011/2012 and 2017/2019. Major taxa studiedVascular plants. MethodsUsing permanent vegetation plots placed on 45 mountain summits and soil temperature loggers situated along a ~6800 km N‐S gradient, we measured species and their relative percentage cover and estimated CTN in two surveys (intervals between 5 and 8 years). We then estimated the annual rate of changes for the three variables and used generalized linear models to assess their relationship with annual precipitation, the minimum air temperatures of each summit and rates of change in the locally recorded soil temperatures. ResultsOver time, there was an average loss of vegetation cover (mean = −0.26%/yr), and a gain in SR across summits (mean = 0.38 species m2/yr), but most summits had significant increases in SR and vegetation cover. Changes in SR were positively related to minimum air temperature and soil temperature rate of change. Most plant communities experienced shifts in their composition by including greater abundances of species with broader thermal niches and higher optima. However, the measured changes in soil temperature did not explain the observed changes in CTN. Main conclusionsHigh Andean vegetation is changing in cover and SR and is shifting towards species with wider thermal niche breadths. The weak relationship with soil temperature trends could have resulted from the short study period that only marginally captures changes in vegetation through time. 
    more » « less