skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Low-temperature ice nucleation of sea spray and secondary marine aerosols under cirrus cloud conditions
Abstract. Sea spray aerosols (SSAs) represent one of the most abundant aerosol types on a global scale and have been observed at all altitudes including the upper troposphere. SSA has been explored in recent years as a source of ice-nucleating particles (INPs) in cirrus clouds due to the ubiquity of cirrus clouds and the uncertainties in their radiative forcing. This study expands upon previous works on low-temperature ice nucleation of SSA by investigating the effects of atmospheric aging of SSA and the ice-nucleating activity of newly formed secondary marine aerosols (SMAs) using an oxidation flow reactor. Polydisperse aerosol distributions were generated from a marine aerosol reference tank (MART) filled with 120 L of real or artificial seawater and were dried to very low relative humidity to crystallize the salt constituents of SSA prior to their subsequent freezing, which was measured using a continuous flow diffusion chamber (CFDC). Results show that for primary SSA (pSSA), as well as aged SSA and SMA (aSSA+SMA) at temperatures >220 K, homogeneous conditions (92 %–97 % relative humidity with respect to water – RHw) were required to freeze 1 % of the particles. However, below 220 K, heterogeneous nucleation occurs for both pSSA and aSSA+SMA at much lower RHw, where up to 1 % of the aerosol population freezes between 75 % and 80 % RHw. Similarities between freezing behaviors of the pSSA and aSSA+SMA at all temperatures suggest that the contributions of condensed organics onto the pSSA or alteration of functional groups in pSSA via atmospheric aging did not hinder the major heterogeneous ice nucleation process at these cirrus temperatures, which have previously been shown to be dominated by the crystalline salts. Occurrence of a 1 % frozen fraction of SMA, generated in the absence of primary SSA, was observed at or near water saturation below 220 K, suggesting it is not an effective INP at cirrus temperatures, similar to findings in the literature on other organic aerosols. Thus, any SMA coatings on the pSSA would only decrease the ice nucleation behavior of pSSA if the organic components were able to significantly delay water uptake of the inorganic salts, and apparently this was not the case. Results from this study demonstrate the ability of lofted primary sea spray particles to remain an effective ice nucleator at cirrus temperatures, even after atmospheric aging has occurred over a period of days in the marine boundary layer prior to lofting. We were not able to address aging processes under upper-tropospheric conditions.  more » « less
Award ID(s):
1801971
PAR ID:
10567469
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
European Geosciences Union
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
24
Issue:
2
ISSN:
1680-7324
Page Range / eLocation ID:
911 to 928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The abundance and sources of ice‐nucleating particles, particles required for heterogeneous ice nucleation, are long‐standing sources of uncertainty in quantifying aerosol‐cloud interactions. In this study, we demonstrate near closure between immersion freezing ice‐nucleating particle number concentration (nINPs) observations andnINPscalculated from simulated sea spray aerosol and dust. The Community Atmospheric Model with constrained meteorology was used to simulate aerosol concentrations at the Mace Head Research Station (North Atlantic) and over the Southern Ocean to the south of Tasmania (Clouds, Aerosols, Precipitation, Radiation, and atmospherIc Composition Over the southeRN ocean campaign). Model‐predictednINPswere within a factor of 10 ofnINPsobserved with an off‐line ice spectrometer at Mace Head Research Station and Clouds, Aerosols, Precipitation, Radiation, and atmospherIc Composition Over the southeRN ocean campaign, for 93% and 69% of observations, respectively. Simulated vertical profiles ofnINPsreveal that transported dust may be critical tonINPsin remote regions and that sea spray aerosol may be the dominate contributor to primary ice nucleation in Southern Ocean low‐level mixed‐phase clouds. 
    more » « less
  2. Heterogeneous ice nucleation in the atmosphere regulates cloud properties, such as phase (ice versus liquid) and lifetime. Aerosol particles of marine origin are relevant ice nucleating particle sources when marine aerosol layers are lifted over mountainous terrain and in higher latitude ocean boundary layers, distant from terrestrial aerosol sources. Among many particle compositions associated with ice nucleation by sea spray aerosols are highly saturated fatty acids. Previous studies have not demonstrated their ability to freeze dilute water droplets. This study investigates ice nucleation by monolayers at the surface of supercooled droplets and as crystalline particles at temperatures exceeding the threshold for homogeneous freezing. Results show the poor efficiency of long chain fatty acid (C16, C18) monolayers in templating freezing of pure water droplets and seawater subphase to temperatures of at least −30 °C, consistent with theory. This contrasts with freezing of fatty alcohols (C22 used here) at nearly 20 °C warmer. Evaporation of μL-sized droplets to promote structural compression of a C19 acid monolayer did not favor warmer ice formation of drops. Heterogeneous ice nucleation occurred for nL-sized droplets condensed on 5 to 100 μm crystalline particles of fatty acid (C12 to C20) at a range of temperatures below −28 °C. These experiments suggest that fatty acids nucleate ice at warmer than −36 °C only when the crystalline phase is present. Rough estimates of ice active site densities are consistent with those of marine aerosols, but require knowledge of the proportion of surface area comprised of fatty acids for application. 
    more » « less
  3. Abstract. Ice-nucleating particles (INPs) represent a rare subset of aerosol particlesthat initiate cloud droplet freezing at temperatures above the homogenousfreezing point of water (−38 ∘C). Considering that the oceancovers 71 % of the Earth's surface and represents a large potential sourceof INPs, it is imperative that the identities, properties and relativeemissions of ocean INPs become better understood. However, the specificunderlying drivers of marine INP emissions remain largely unknown due tolimited observations and the challenges associated with isolating rare INPs. Bygenerating isolated nascent sea spray aerosol (SSA) over a range ofbiological conditions, mesocosm studies have shown that marine microbes cancontribute to INPs. Here, we identify 14 (30 %) cultivable halotolerantice-nucleating microbes and fungi among 47 total isolates recovered fromprecipitation and aerosol samples collected in coastal air in southernCalifornia. Ice-nucleating (IN) isolates collected in coastal air were nucleated ice fromextremely warm to moderate freezing temperatures (−2.3 to −18 ∘C). While some Gammaproteobacteria and fungi are known to nucleate ice attemperatures as high as −2 ∘C, Brevibacterium sp. is the first Actinobacteriafound to be capable of ice nucleation at a relatively high freezingtemperature (−2.3 ∘C). Air mass trajectory analysis demonstratesthat marine aerosol sources were dominant during all sampling periods, andphylogenetic analysis indicates that at least 2 of the 14 IN isolates areclosely related to marine taxa. Moreover, results from cell-washingexperiments demonstrate that most IN isolates maintained freezing activityin the absence of nutrients and cell growth media. This study supportsprevious studies that implicated microbes as a potential source of marineINPs, and it additionally demonstrates links between precipitation, marineaerosol and IN microbes. 
    more » « less
  4. Sea spray aerosol contains ice-nucleating particles (INPs), which affect the formation and properties of clouds. Here, we show that aerosols emitted from fast-growing marine phytoplankton produce effective immersion INPs, which nucleate at temperatures significantly warmer than the atmospheric homogeneous freezing (−38.0 ∘C) of pure water. Aerosol sampled over phytoplankton cultures grown in a Marine Aerosol Reference Tank (MART) induced nucleation and freezing at temperatures as high as −15.0 ∘C during exponential phytoplankton growth. This was observed in monospecific cultures representative of two major groups of phytoplankton, namely a cyanobacterium (Synechococcus elongatus) and a diatom (Thalassiosira weissflogii). Ice nucleation occurred at colder temperatures (−28.5 ∘C and below), which were not different from the freezing temperatures of procedural blanks, when the cultures were in the stationary or death phases of growth. Ice nucleation at warmer temperatures was associated with relatively high values of the maximum quantum yield of photosystem II (ΦPSII), an indicator of the physiological status of phytoplankton. High values of ΦPSII indicate the presence of cells with efficient photochemistry and greater potential for photosynthesis. For comparison, field measurements in the North Atlantic Ocean showed that high net growth rates of natural phytoplankton assemblages were associated with marine aerosol that acted as effective immersion INPs at relatively warm temperatures. Data were collected over 4 d at a sampling station maintained in the same water mass as the water column stabilized after deep mixing by a storm. Phytoplankton biomass and net phytoplankton growth rate (0.56 d−1) were greatest over the 24 h preceding the warmest mean ice nucleation temperature (−25.5 ∘C). Collectively, our laboratory and field observations indicate that phytoplankton physiological status is a useful predictor of effective INPs and more reliable than biomass or taxonomic affiliation. Ocean regions associated with fast phytoplankton growth, such as the North Atlantic during the annual spring bloom, may be significant sources of atmospheric INPs. 
    more » « less
  5. Abstract The formation of ice in clouds can strongly impact cloud properties and precipitation processes during storms, including atmospheric rivers. Sea spray aerosol (SSA) particles are relatively inefficient as ice nucleating particles (INPs) compared to mineral dust. However, due to the vast coverage of the Earth's surface by the oceans, a number of recent studies have focused on identifying sources of marine INPs, particularly in regions lacking a strong influence from dust. This study describes the integration, validation, and application of a system coupling a continuous flow diffusion chamber with a single particle mass spectrometer using a pumped counterflow virtual impactor to remove nonnucleated particles and selectively measure the composition of INPs with a detection efficiency of 3.10×10−4. In situ measurements of immersion freezing INP composition were made at a coastal site in California using the integrated system. Mineral dust particles were the most abundant ice crystal residual type during the sampling period and found to be ice active despite having undergone atmospheric processing. SSA were more abundant in ambient measurements but represented only a minor fraction of the ice crystal residual population at −31 °C. Notably, the SSA particles that activated were enriched with organic nitrogen species that were likely transferred from the ocean. Calculations of ice nucleation active site densities were within good agreement with previous studies of mineral dust and SSA. 
    more » « less