skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Local polar order controls mechanical stress and triggers layer formation in Myxococcus xanthus colonies
Abstract Colonies of the social bacteriumMyxococcus xanthusgo through a morphological transition from a thin colony of cells to three-dimensional droplet-like fruiting bodies as a strategy to survive starvation. The biological pathways that control the decision to form a fruiting body have been studied extensively. However, the mechanical events that trigger the creation of multiple cell layers and give rise to droplet formation remain poorly understood. By measuring cell orientation, velocity, polarity, and force with cell-scale resolution, we reveal a stochastic local polar order in addition to the more obvious nematic order. Average cell velocity and active force at topological defects agree with predictions from active nematic theory, but their fluctuations are substantially larger than the mean due to polar active forces generated by the self-propelled rod-shaped cells. We find thatM. xanthuscells adjust their reversal frequency to tune the magnitude of this local polar order, which in turn controls the mechanical stresses and triggers layer formation in the colonies.  more » « less
Award ID(s):
2210346
PAR ID:
10567490
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
16
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rodríguez-Verdugo, Alejandra (Ed.)
    ABSTRACT The soil bacteriumMyxococcus xanthusis a model organism with a set of diverse behaviors. These behaviors include the starvation-induced multicellular development program, in which cells move collectively to assemble multicellular aggregates. After initial aggregates have formed, some will disperse, with smaller aggregates having a higher chance of dispersal. Initial aggregation is driven by two changes in cell behavior: cells slow down inside of aggregates and bias their motion by reversing direction less frequently when moving toward aggregates. However, the cell behaviors that drive dispersal are unknown. Here, we use fluorescent microscopy to quantify changes in cell behavior after initial aggregates have formed. We observe that after initial aggregate formation, cells adjust the bias in reversal timings by initiating reversals more rapidly when approaching unstable aggregates. Using agent-based modeling, we then show dispersal is predominantly generated by this change in bias, which is strong enough to overcome slowdown inside aggregates. Notably, the change in reversal bias is correlated with the nearest aggregate size, connecting cellular activity to previously observed correlations between aggregate size and fate. To determine if this connection is consistent across strains, we analyze a secondM. xanthusstrain with reduced levels of dispersal. We find that far fewer cells near smaller aggregates modified their bias. This implies that aggregate dispersal is under genetic control, providing a foundation for further investigations into the role it plays in the life cycle ofM. xanthus. IMPORTANCEUnderstanding the processes behind bacterial biofilm formation, maintenance, and dispersal is essential for addressing their effects on health and ecology. Within these multicellular communities, various cues can trigger differentiation into distinct cell types, allowing cells to adapt to their specific local environment. The soil bacteriumMyxococcus xanthusforms biofilms in response to starvation, marked by cells aggregating into mounds. Some aggregates persist as spore-filled fruiting bodies, while others disperse after initial formation for unknown reasons. Here, we use a combination of cell tracking analysis and computational simulations to identify behaviors at the cellular level that contribute to aggregate dispersal. Our results suggest that cells in aggregates actively determine whether to disperse or persist and undergo a transition to sporulation based on a self-produced cue related to the aggregate size. Identifying these cues is an important step in understanding and potentially manipulating bacterial cell-fate decisions. 
    more » « less
  2. Glass, Jennifer B (Ed.)
    ABSTRACT Environmental microorganisms have evolved a variety of strategies to survive fluctuations in environmental conditions, including the production of biofilms and differentiation into spores.Myxococcus xanthusare ubiquitous soil bacteria that produce starvation-induced multicellular fruiting bodies filled with environmentally resistant spores (a specialized biofilm). Isolated spores have been shown to be more resistant than vegetative cells to heat, ultraviolet radiation, and desiccation. The evolutionary advantage of producing spores inside fruiting bodies is not clear. Here, we examine a hypothesis that the fruiting body provides additional protection from environmental insults. We developed a high-throughput method to compare the recovery (outgrowth) of distinct cell types (vegetative cells, free spores, and spores within intact fruiting bodies) after exposure to ultraviolet radiation or desiccation. Our data indicate that haystack-shaped fruiting bodies protect spores from extended UV radiation but do not provide additional protection from desiccation. Perturbation of fruiting body morphology strongly impedes recovery from both UV exposure and desiccation. These results hint that the distinctive fruiting bodies produced by different myxobacterial species may have evolved to optimize their persistence in distinct ecological niches.IMPORTANCEEnvironmental microorganisms play an important role in the production of greenhouse gases that contribute to changing climate conditions. It is imperative to understand how changing climate conditions feedback to influence environmental microbial communities. The myxobacteria are environmentally ubiquitous social bacteria that influence the local microbial community composition. Defining how these bacteria are affected by environmental insults is a necessary component of predicting climatic feedback effects. When starved, myxobacteria produce multicellular fruiting bodies filled with spores. As spores are resistant to a variety of environmental insults, the evolutionary advantage of building a fruiting body is not clear. Using the model myxobacterium,Myxococcus xanthus, we demonstrate that the tall, haystack-shaped fruiting body morphology enables significantly more resistance to UV exposure than the free spores. In contrast, fruiting bodies are slightly detrimental to recovery from extended desiccation, an effect that is strongly exaggerated if fruiting body morphology is perturbed. These results suggest that the variety of fruiting body morphologies observed in the myxobacteria may dictate their relative resistance to changing climate conditions. 
    more » « less
  3. Abstract Much like passive materials, active systems can be affected by the presence of imperfections in their microscopic order, called defects, that influence macroscopic properties. This suggests the possibility to steer collective patterns by introducing and controlling defects in an active system. Here we show that a self-assembled, passive nematic is ideally suited to control the pattern formation process of an active fluid. To this end, we force microtubules to glide inside a passive nematic material made from actin filaments. The actin nematic features self-assembled half-integer defects that steer the active microtubules and lead to the formation of macroscopic polar patterns. Moreover, by confining the nematic in circular geometries, chiral loops form. We find that the exact positioning of nematic defects in the passive material deterministically controls the formation and the polarity of the active flow, opening the possibility of efficiently shaping an active material using passive defects. 
    more » « less
  4. Søgaard-Andersen, Lotte (Ed.)
    ABSTRACT Myxococcus xanthususes short-range C-signaling to coordinate multicellular mound formation with sporulation during fruiting body development. AcsgAmutant deficient in C-signaling can cheat on wild type (WT) in mixtures and form spores disproportionately, but our understanding of cheating behavior is incomplete. We subjected mixtures of WT andcsgAcells at different ratios to co-development and used confocal microscopy and image analysis to quantify the arrangement and morphology of cells. At a ratio of one WT to fourcsgAcells (1:4), mounds failed to form. At 1:2, only a few mounds and spores formed. At 1:1, mounds formed with a similar number and arrangement of WT andcsgArods early in development, but later the number ofcsgAspores near the bottom of these nascent fruiting bodies (NFBs) exceeded that of WT. This cheating after mound formation involvedcsgAforming spores at a greater rate, while WT disappeared at a greater rate, either lysing or exiting NFBs. At 2:1 and 4:1,csgArods were more abundant than expected throughout the biofilm both before and during mound formation, and cheating continued after mound formation. We conclude that C-signaling restricts cheating behavior by requiring sufficient WT cells in mixtures. Excess cheaters may interfere with positive feedback loops that depend on the cellular arrangement to enhance C-signaling during mound building. Since long-range signaling could not likewise communicate the cellular arrangement, we propose that C-signaling was favored evolutionarily and that other short-range signaling mechanisms provided selective advantages in bacterial biofilm and multicellular animal development. IMPORTANCEBacteria communicate using both long- and short-range signals. Signaling affects community composition, structure, and function. Adherent communities called biofilms impact medicine, agriculture, industry, and the environment. To facilitate the manipulation of biofilms for societal benefits, a better understanding of short-range signaling is necessary. We investigated the susceptibility of short-range C-signaling to cheating duringMyxococcus xanthusbiofilm development. A mutant deficient in C-signaling fails to form mounds containing spores (i.e., fruiting bodies) but cheats on C-signaling by wild type in starved cell mixtures and forms spores disproportionately. We found that cheating requires sufficient wild-type cells in the initial mix and can occur both before mound formation and later during the sporulation stage of development. By restricting cheating behavior, short-range C-signaling may have been favored evolutionarily rather than long-range diffusible signaling. Cheating restrictions imposed by short-range signaling may have likewise driven the evolution of multicellularity broadly. 
    more » « less
  5. Abstract Myxobacteria are non-photosynthetic bacteria distinguished among prokaryotes by a multicellular stage in their life cycle known as fruiting bodies that are formed in response to nutrient deprivation and stimulated by light. Here, we report an entrained, rhythmic pattern ofMyxococcus macrosporusfruiting bodies, forming consistently spaced concentric rings when grown in the dark. Light exposure disrupts this rhythmic phenotype, resulting in a sporadic arrangement and reduced fruiting-body count.M. macrosporusgenome encodes a red-light photoreceptor, a bacteriophytochrome (BphP), previously shown to affect the fruiting-body formation in the related myxobacteriumStigmatella aurantiaca. Similarly, the formation ofM. macrosporusfruiting bodies is also impacted by the exposure to BphP—specific wavelengths of light. RNA-Seq analysis ofM. macrosporusrevealed constitutive expression of thebphPgene. Phytochromes, as light-regulated enzymes, control many aspects of plant development including photomorphogenesis. They are intrinsically correlated to circadian clock proteins, impacting the overall light-mediated entrainment of the circadian clock. However, this functional relationship remains unexplored in non-photosynthetic prokaryotes. Genomic analysis unveiled the presence of multiple homologs of cyanobacterial core oscillatory gene,kaiC, in various myxobacteria, includingM. macrosporus,S. aurantiaca and M. xanthus. RNA-Seq analysis verified the expression of allkaiChomologs inM. macrosporusand the closely relatedM. xanthus, which lacksbphPgenes. Overall, this study unravels the rhythmic growth pattern duringM. macrosporusdevelopment, governed by environmental factors such as light and nutrients. In addition, myxobacteria may have a time-measuring mechanism resembling the cyanobacterial circadian clock that links the photoreceptor (BphP) function to the observed rhythmic behavior. Graphical abstract 
    more » « less