skip to main content


This content will become publicly available on November 21, 2025

Title: Room‐Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical/Thermal Organometallic Cascade for Methanol Synthesis from CO 2
Abstract

The reduction of CO2to synthetic fuels is a valuable strategy for energy storage. However, the formation of energy‐dense liquid fuels such as methanol remains rare, particularly under low‐temperature and low‐pressure conditions that can be coupled to renewable electricity sources via electrochemistry. Here, a multicatalyst system pairing an electrocatalyst with a thermal organometallic catalyst is introduced, which enables the reduction of CO2to methanol at ambient temperature and pressure. The cascade methanol synthesis proceeds via CO2reduction to formate by electrocatalyst [Cp*Ir(bpy)Cl]+(Cp*=pentamethylcyclopentadienyl, bpy=2,2′‐bipyridine), Fischer esterification of formate to isopropyl formate catalyzed by trifluoromethanesulfonic acid (HOTf), and thermal transfer hydrogenation of isopropyl formate to methanol facilitated by the organometallic catalyst (H‐PNP)Ir(H)3(H‐PNP=HN(C2H4PiPr2)2). The isopropanol solvent plays several crucial roles: activating formate ion as isopropyl formate, donating hydrogen for the reduction of formate ester to methanol via transfer hydrogenation, and lowering the barrier for transfer hydrogenation through hydrogen bonding interactions. In addition to reporting a method for room‐temperature reduction of challenging ester substrates, this work provides a prototype for pairing electrochemical and thermal organometallic reactions that will guide the design and development of multicatalyst cascades.

 
more » « less
PAR ID:
10567592
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
64
Issue:
4
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The reduction of CO2to synthetic fuels is a valuable strategy for energy storage. However, the formation of energy‐dense liquid fuels such as methanol remains rare, particularly under low‐temperature and low‐pressure conditions that can be coupled to renewable electricity sources via electrochemistry. Here, a multicatalyst system pairing an electrocatalyst with a thermal organometallic catalyst is introduced, which enables the reduction of CO2to methanol at ambient temperature and pressure. The cascade methanol synthesis proceeds via CO2reduction to formate by electrocatalyst [Cp*Ir(bpy)Cl]+(Cp*=pentamethylcyclopentadienyl, bpy=2,2′‐bipyridine), Fischer esterification of formate to isopropyl formate catalyzed by trifluoromethanesulfonic acid (HOTf), and thermal transfer hydrogenation of isopropyl formate to methanol facilitated by the organometallic catalyst (H‐PNP)Ir(H)3(H‐PNP=HN(C2H4PiPr2)2). The isopropanol solvent plays several crucial roles: activating formate ion as isopropyl formate, donating hydrogen for the reduction of formate ester to methanol via transfer hydrogenation, and lowering the barrier for transfer hydrogenation through hydrogen bonding interactions. In addition to reporting a method for room‐temperature reduction of challenging ester substrates, this work provides a prototype for pairing electrochemical and thermal organometallic reactions that will guide the design and development of multicatalyst cascades.

     
    more » « less
  2. A critical challenge in electrocatalytic CO2reduction to renewable fuels is product selectivity. Desirable products of CO2reduction require proton equivalents, but key catalytic intermediates can also be competent for direct proton reduction to H2. Understanding how to manage divergent reaction pathways at these shared intermediates is essential to achieving high selectivity. Both proton reduction to hydrogen and CO2reduction to formate generally proceed through a metal hydride intermediate. We apply thermodynamic relationships that describe the reactivity of metal hydrides with H+and CO2to generate a thermodynamic product diagram, which outlines the free energy of product formation as a function of proton activity and hydricity (∆GH−), or hydride donor strength. The diagram outlines a region of metal hydricity and proton activity in which CO2reduction is favorable and H+reduction is suppressed. We apply our diagram to inform our selection of [Pt(dmpe)2](PF6)2as a potential catalyst, because the corresponding hydride [HPt(dmpe)2]+has the correct hydricity to access the region where selective CO2reduction is possible. We validate our choice experimentally; [Pt(dmpe)2](PF6)2is a highly selective electrocatalyst for CO2reduction to formate (>90% Faradaic efficiency) at an overpotential of less than 100 mV in acetonitrile with no evidence of catalyst degradation after electrolysis. Our report of a selective catalyst for CO2reduction illustrates how our thermodynamic diagrams can guide selective and efficient catalyst discovery.

     
    more » « less
  3. Abstract

    Methanol is a major fuel and chemical feedstock currently produced from syngas, a CO/CO2/H2mixture. Herein we identify formate binding strength as a key parameter limiting the activity and stability of known catalysts for methanol synthesis in the presence of CO2. We present a molybdenum phosphide catalyst for CO and CO2reduction to methanol, which through a weaker interaction with formate, can improve the activity and stability of methanol synthesis catalysts in a wide range of CO/CO2/H2feeds.

     
    more » « less
  4. Abstract

    We present a density functional theory-based mechanistic understanding of CO2hydrogenation to value-added products on a nitrogen-vacancy (VN) defect in hexagonal boron nitride (dh-BN). Activation occurs through back-donation to theπ* orbitals of CO2from the frontier orbitals (defect state) of theh-BN sheet that are localized near a nitrogen-vacancy. Subsequent hydrogenation to methanol (CH3OH) and formic acid (HCOOH) proceed through vacancy-facilitated co-adsorption of hydrogen and CO2. More importantly, our reaction pathway analyses complimented by microkinetic modeling indicate thatdh-BN is potentially a low-temperature, selective catalyst for CO2reduction to methanol. Our findings are in agreement with experiments conducted in a mechanical reactor that show high selectivity towards methanol formation for CO2hydrogenation on defect inducedh-BN.

     
    more » « less
  5. Abstract

    A series of twelve second coordination sphere (SCS) functionalized manganese tricarbonyl bipyridyl complexes are investigated for their electrocatalytic CO2reduction properties in acetonitrile. A qualitative and quantitative assessment of the SCS functional groups is discussed with respect to the catalysts’ thermodynamic and kinetic efficiencies, and their product selectivities. In probing a broad scope of functional groups, it is clear that only the aprotic ortho‐arylester SCS is capable of promoting the highly desired low‐overpotential proton‐transfer electron‐transfer (PT‐ET) pathway for selective CO production. The ortho‐phenolic analogues cause an increase in overpotential with a product selectivity favoring H2evolution, consistent with a high‐overpotential pathway via the anionic [Mn−H]intermediate. Alternative aprotic Lewis base functional groups such as trifluoromethyl, morpholine and acetamide are shown to also be capable of intermediate manganese hydride generation. The tertiary amine substituent, 2‐morpholinophenyl, exhibits a desirable product distribution characteristic of syn‐gas (CO : H2=30 : 48) with an impressive turnover frequency, while the secondary amine group, 2‐acetamidophenyl, induces a notable shift in selectivity with a faradaic yield of 55 % for the formate (HCO2) product. In addition to their catalytic properties, cyclic voltammetry and infrared spectroelectrochemistry (IR‐SEC) studies are presented to probe pre‐catalyst electronic properties and the two‐electron reduction activation pathway.

     
    more » « less