Abstract Using Fisher information matrices, we forecast the uncertaintiesσMon the measurement of a “Planet X” at heliocentric distancedXvia its tidal gravitational field’s action on the known planets. Using planetary measurements currently in hand, including ranging from the Juno, Cassini, and Mars-orbiting spacecraft, we forecast a median uncertainty (over all sky positions) of A 5σdetection of a 5M⊕Planet X atdX= 400 au should be possible over the full sky but over only 5% of the sky atdX= 800 au. The gravity of an undiscovered Earth- or Mars-mass object should be detectable over 90% of the sky to a distance of 260 or 120 au, respectively. Upcoming Mars ranging improves these limits only slightly. We also investigate the power of high-precision astrometry of ≈8000 Jovian Trojans over the 2023–2035 period from the upcoming Legacy Survey of Space and Time (LSST). We find that the dominant systematic errors in optical Trojan astrometry (photocenter motion, nongravitational forces, and differential chromatic refraction) can be solved internally with minimal loss of information. The Trojan data allow cross-checks with Juno/Cassini/Mars ranging, but do not significantly improve the best achievableσMvalues until they are ≳10× more accurate than expected from LSST. The ultimate limiting factor in searches for a Planet X tidal field is confusion with the tidal field created by the fluctuating quadrupole moment of the Kuiper Belt as its members orbit. This background will not, however, become the dominant source of uncertainty until the data get substantially better than they are today.
more »
« less
An Automated Occultation Network for Gravitational Mapping of the Trans-Neptunian Solar System
Abstract We explore the potential of an array of small fixed telescopes, aligned along a meridian and automated to measure millions of occultations of Gaia stars by minor planets, to constrain gravitational signatures from a “Planet X” mass in the outer solar system. The accuracy of center-of-mass tracking of occulters is limited by photon noise, uncertainties in asteroid shapes, and Gaia’s astrometry of the occulted stars. Using both parametric calculations and survey simulations, we assess the total information obtainable from occultation measurements of main-belt asteroids (MBAs), Jovian Trojans, and trans-Neptunian objects (TNOs). We find that MBAs are the optimal target population due to their higher occultation rates and abundance of objects above Legacy Survey of Space and Time detection thresholds. A 10 yr survey of occultations by MBAs and Trojans using an array of 200 40 cm telescopes at 5 km separation would achieve 5σsensitivity to the gravitational tidal field of a 5M⊕Planet X at 800 au for >90% of potential sky locations. This configuration corresponds to an initial cost of ≈$15 million. While the survey's sensitivity to tidal forces improves rapidly with increasing number of telescopes, sensitivity to a Planet X becomes limited by degeneracy with the uncertain masses of large moonless TNOs. The 200-telescope survey would additionally detect ≈1800 TNO occultations, providing detailed shape, size, and albedo information. It would also measure the Yarkovsky effect on many individual MBAs, measure masses of many asteroids involved in mutual gravitational deflections, and enable better searches for primordial black holes and departures from general relativity.
more »
« less
- Award ID(s):
- 2205808
- PAR ID:
- 10567600
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Planetary Science Journal
- Volume:
- 6
- Issue:
- 1
- ISSN:
- 2632-3338
- Format(s):
- Medium: X Size: Article No. 19
- Size(s):
- Article No. 19
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Due to their strong resonances with their host planet, Trojan asteroids can remain in stable orbits for billions of years. As a result, they are powerful probes for constraining the dynamical and chemical history of the solar system. Although we have detected thousands of Jupiter Trojans and dozens of Neptune Trojans, there are currently no known long-term stable Earth Trojans (ETs). Dynamical simulations show that the parameter space for stable ETs is substantial, so their apparent absence poses a mystery. This work uses a large ensemble ofN-body simulations to explore how the Trojan population dynamically responds if Earth suffers large collisions, such as those thought to have occurred to form the Moon and/or to have given Earth its late veneer. We show that such collisions can be highly disruptive to the primordial Trojan population, and could have eliminated it altogether. More specifically, if Earth acquired the final 1% of its mass through collisions, then only ∼1% of the previously bound Trojan population would remain.more » « less
-
Abstract We study the ringdown signal of black holes formed in prompt-collapse binary neutron star mergers. We analyze data from 47 numerical relativity simulations. We show that the and multipoles of the gravitational wave signal are well fitted by decaying damped exponentials, as predicted by black-hole perturbation theory. We show that the ratio of the amplitude in the two modes depends on the progenitor binary mass ratioqand reduced tidal parameter . Unfortunately, the numerical uncertainty in our data is too large to fully quantify this dependency. If confirmed, these results will enable novel tests of general relativity in the presence of matter with next-generation gravitational-wave observatories.more » « less
-
Abstract Close binary systems present challenges to planet formation. As binary separations decrease, so do the occurrence rates of protoplanetary disks in young systems and planets in mature systems. For systems that do retain disks, their disk masses and sizes are altered by the presence of the binary companion. Through the study of protoplanetary disks in binary systems with known orbital parameters, we seek to determine the properties that promote disk retention and therefore planet formation. In this work, we characterize the young binary−disk system FO Tau. We determine the first full orbital solution for the system, finding masses of and 0.34 ± 0.05M⊙for the stellar components, a semimajor axis of au, and an eccentricity of . With long-baseline Atacama Large Millimeter/submillimeter Array interferometry, we detect 1.3 mm continuum and12CO (J= 2–1) line emission toward each of the binary components; no circumbinary emission is detected. The protoplanetary disks are compact, consistent with being truncated by the binary orbit. The dust disks are unresolved in the image plane, and the more extended gas disks are only marginally resolved. Fitting the continuum and CO visibilities, we determine the inclination of each disk, finding evidence for alignment of the disk and binary orbital planes. This study is the first of its kind linking the properties of circumstellar protoplanetary disks to a precisely known binary orbit. In the case of FO Tau, we find a dynamically placid environment (coplanar, low eccentricity), which may foster its potential for planet formation.more » « less
-
Abstract LetXbe acompact orientable non-Haken 3-manifold modeled on the Thurston geometry {\operatorname{Nil}}. We show that the diffeomorphism group {\operatorname{Diff}(X)}deformation retracts to the isometry group {\operatorname{Isom}(X)}. Combining this with earlier work by many authors, this completes the determination the homotopy type of {\operatorname{Diff}(X)}for any compact, orientable, prime 3-manifoldX.more » « less
An official website of the United States government
