skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Recent Advances in the Mechanistic Understanding of Avian Responses to Environmental Challenges
Synopsis Endothermic species have evolved strategies to maximize survival in highly variable or extreme environments. Birds are exemplary as they are among the most widely distributed endotherms on the planet, living in all manner of inhospitable environments. As an example, winter in temperate regions is characterized by cold temperatures and low food availability. Some birds have evolved to tolerate these conditions by seasonally increasing thermogenic capacity, increasing heterothermy, and displaying highly flexible phenotypes. Other species have evolved to avoid the inhospitable conditions of winter altogether by migrating—again requiring a unique set of physiological adaptations that allow success in this challenging endeavor. In these examples and in many others, the organismal requirements for success share similarities, but the underlying mechanisms, physiological requirements, and selection on those traits can differ significantly, as can their ecological and evolutionary impacts. In recent years, a suite of novel and established tools has become widely available and more accessible, allowing insights into long-standing questions. Genomic tools, new approaches to measure organismal performance, the use of citizen science data, easier access to metabolite assays or hormone detection, to name a few, have spurred rapid advances in our understanding of avian physiology. These new tools have been leveraged to investigate important questions regarding avian responses to our rapidly changing climate in an attempt to understand species resilience and limits.  more » « less
Award ID(s):
2336743
PAR ID:
10567663
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford
Date Published:
Journal Name:
Integrative And Comparative Biology
Volume:
64
Issue:
6
ISSN:
1540-7063
Page Range / eLocation ID:
1757 to 1765
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Responses of wildlife to climate change are typically quantified at the species level, but physiological evidence suggests significant intraspecific variation in thermal sensitivity given adaptation to local environments and plasticity required to adjust to seasonal environments. Spatial and temporal variation in thermal responses may carry important implications for climate change vulnerability; for instance, sensitivity to extreme weather may increase in specific regions or seasons. Here, we leverage high-resolution observational data from eBird to understand regional and seasonal variation in thermal sensitivity for 21 bird species. Across their ranges, most birds demonstrated regional and seasonal variation in both thermal peak and range, or the temperature and range of temperatures when observations peaked. Some birds demonstrated constant thermal peaks or ranges across their geographical distributions, while others varied according to local and current environmental conditions. Across species, birds typically demonstrated either geographical or seasonal adaptation to climate. Local adaptation and phenotypic plasticity are likely important but neglected aspects of organismal responses to climate change. 
    more » « less
  2. Stable isotope analysis has been widely used to investigate dietary and geographical information of organisms, but few studies have applied it to archaeological avian remains. Through carbon and nitrogen stable isotope analyses of bone collagen, this study examines the diet sources of several wild bird species in an attempt to discover their foraging patterns and associated human hunting behavior. These avian remains are from CA- ALA-554 in the East San Francisco Bay Area and represent a time span of 900 years, partly overlapping with the Medieval Climatic Anomaly (MCA). We compare the isotopic signatures of samples from different windows of time represented at the site to investigate the influence of droughts during the MCA and the responses of birds and humans. Our findings show that during the MCA, geese had a larger variance in δ13C and δ15N and avian fauna included a greater range of species. This suggests that birds might have migrated farther and widened their diets and ancient humans might have expanded their hunting range and diversified their prey, possibly in response to more challenging environmental conditions. 
    more » « less
  3. ABSTRACT Avian irruptions are facultative, often periodic, migrations of thousands of birds outside of their resident range. Irruptive movements produce regional anomalies of abundance that oscillate over time, forming ecological dipoles (geographically disjunct regions of low and high abundance) at continental scales. Potential drivers of irruptions include climate and food variability, but these relationships are rarely tested over broad geographic scales. We used community science data on winter bird abundance (1989–2021) to identify spatiotemporal patterns of irruption for nine boreal birds across the United States and Canada and compared them to time series of winter climate and annual tree seed production. We hypothesized that, during irruption, bird abundance would decrease in regions experiencing colder winter climates (climate variability hypothesis) or low seed production resulting from the boom‐and‐bust of widespread mast‐seeding patterns (resource variability hypothesis). Across all species, we detected latitudinal or longitudinal irruption modes, or both, demonstrating north–south and east–west migration dynamics across the northern United States and southern Canada. Seven of nine species displayed associations consistent with the climate variability hypothesis and six with the resource variability hypothesis. While irruption dynamics are likely entrained by multiple environmental drivers, future climate change could alter the spatial and temporal characteristics of avian irruption. 
    more » « less
  4. Synopsis Projected rates of climate change over the next century are expected to force species to shift ranges, adapt, or acclimate to evade extinction. Predicting which of these scenarios may be most likely is a central challenge for conserving biodiversity in the immediate future. Modeling frameworks that take advantage of intraspecific variation across environmental gradients can be particularly important for meeting this challenge. While these space-for-time approaches are essential for climatic and genomic modeling approaches, mechanistic models that incorporate ecological physiology data into assessing species vulnerabilities rarely include intraspecific variation. A major reason for this gap is the general lack of empirical data on intraspecific geographic variation in avian physiological traits. In this review, we outline the evidence for and processes shaping geographic variation in avian traits. We use the example of evaporative water loss to underscore the lack of research on geographic variation, even in traits central to cooling costs in birds. We next demonstrate how shifting the focus of avian physiological research to intraspecific variation can facilitate greater integration with emerging genomics approaches. Finally, we outline important next steps for an integrative approach to advance understanding of avian physiological adaptation within species. Addressing the knowledge gaps outlined in this review will contribute to an improved predictive framework that synthesizes environmental, morphological, physiological, and genomic data to assess species specific vulnerabilities to a warming planet. 
    more » « less
  5. Synopsis Throughout their lives, organisms must integrate and maintain stability across complex developmental, morphological, and physiological systems, all while responding to changing internal and external environments. Determining the mechanisms underlying organismal responses to environmental change and development is a major challenge for biology. This is particularly important in the face of the rapidly changing global climate, increasing human populations, and habitat destruction. In January 2024, we organized a symposium to highlight some current efforts to use modeling to understand organismal responses to short- and long-term changes in their internal and external environments. Our goal was to facilitate collaboration and communication between modelers and organismal biologists, which is one of the major aims of the Organismal Systems-type Modeling Research Coordination Network, OSyM. Accompanying this introduction are a series of papers that are aimed to enhance research and education in linking organismal biology and modeling and contribute to building a new community of scientists to tackle important questions using this approach. 
    more » « less