Abstract BackgroundPlant DNA isolation and purification is a time-consuming and laborious process relative to epithelial and viral DNA sample preparation due to the cell wall. The lysis of plant cells to free intracellular DNA normally requires high temperatures, chemical surfactants, and mechanical separation of plant tissue prior to a DNA purification step. Traditional DNA purification methods also do not aid themselves towards fieldwork due to the numerous chemical and bulky equipment requirements. ResultsIn this study, intact plant tissue was coated by hydrophobic magnetic ionic liquids (MILs) and ionic liquids (ILs) and allowed to incubate under static conditions or dispersed in a suspension buffer to facilitate cell disruption and DNA extraction. The DNA-enriched MIL or IL was successfully integrated into the qPCR buffer without inhibiting the reaction. The two aforementioned advantages of ILs and MILs allow plant DNA sample preparation to occur in one minute or less without the aid of elevated temperatures or chemical surfactants that typically inhibit enzymatic amplification methods. MIL or IL-coated plant tissue could be successfully integrated into a qPCR assay without the need for custom enzymes or manual DNA isolation/purification steps that are required for conventional methods. ConclusionsThe limited amount of equipment, chemicals, and time required to disrupt plant cells while simultaneously extracting DNA using MILs makes the described procedure ideal for fieldwork and lab work in low resource environments.
more »
« less
This content will become publicly available on December 9, 2025
Bacterial Cellulose Purification with Non-Conventional, Biodegradable Surfactants
Bacterial cellulose (BC) is a versatile biopolymer with significant potential across biomedical, food, and industrial applications. To remove bacterial contaminants, such as protein and DNA, BC pellicles undergo purification, which traditionally relies on harsh alkali treatments, such as sodium hydroxide or strong surfactants, which present environmental concerns. In response, this study evaluates the efficacy of various non-conventional surfactants—both non-biodegradable and biodegradable—as alternatives for BC purification. Among the surfactants tested, sodium cocoyl isethionate (SCI), a mild anionic and biodegradable surfactant, emerged as particularly effective, achieving an 80.7% reduction in protein content and a 65.19% reduction in double-stranded DNA (dsDNA) content relative to untreated samples. However, these advantages were not without additional challenges, such as the appearance of residual surfactants. Given SCI’s promising performance and biodegradability, it was further examined in two-step treatment protocols; additionally, sodium dodecyl sulfate (SDS) was also examined as a more traditional anionic surfactant as well as NaOH. For the two-step treatment protocol, BC pellicles were treated with one reagent for 3 h, followed by a second reagent for an additional 3 h. Notably, by using NaOH as the final step in the two-step treatment protocol, residual surfactant was not detected in the FTIR analysis. Overall, this work demonstrates that SCI, in addition to subsequent NaOH treatment, can be used as a surfactant-based approach for BC purification, representing a potential environmentally friendly alternative to traditional surfactant-based approaches for BC purification.
more »
« less
- Award ID(s):
- 2236940
- PAR ID:
- 10567725
- Publisher / Repository:
- Multidisciplinary Digital Publishing Institute
- Date Published:
- Journal Name:
- Polysaccharides
- Volume:
- 5
- Issue:
- 4
- ISSN:
- 2673-4176
- Page Range / eLocation ID:
- 857 to 871
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this study, a three-dimensional off-lattice kinetic Monte Carlo-Molecular Dynamics (KMC-MD) simulation framework [Comp. Mat. Sci. 229, 112421 (2023)] is used to investigate the dehydrochlorination/conjugation transformation of polyvinyl chloride (PVC) in sodium hydroxide (NaOH) with atomistic resolutions at experimental timescales (103 – 106 s). Our framework enables an examination of the competing reaction pathways and molecular-scale changes influenced by various solvents (acetone, ethylene glycol, triethylene glycol, tetrahydrofuran, and bio-derived solvents), as well as the influence of varying molecular weight distributions, NaOH concentrations, and temperatures. The algorithm simulates bond cleavage and formation during the KMC stages, whereas the MD stage is dedicated to the relaxation and thermalization of the PVC-NaOH-solvent system. The framework allows us to capture important configurational aspects (mixing, correlations, clustering, etc.) that are not accessible with a traditional microkinetic model, and it potentially allows us to perform benchmarking at experimental timescales.more » « less
-
The growing demand for viral vectors as nanoscale therapeutic agents in gene therapy necessitates efficient and scalable purification methods. This study examined the role of nanoscale biomaterials in optimizing viral vector clarification through a model system mimicking real AAV2 crude harvest material. Using lysed HEK293 cells and silica nanoparticles (20 nm) as surrogates for AAV2 crude harvest, we evaluated primary (depth filters) and secondary (membrane-based) filtration processes under different process parameters and solution conditions. These filtration systems were then assessed for their ability to recover nanoscale viral vectors while reducing DNA (without the need for endonuclease treatment), protein, and turbidity. Primary clarification demonstrated that high flux rates (600 LMH) reduced the depth filter’s ability to leverage adsorptive and electrostatic interactions, resulting in a lower DNA removal. Conversely, lower flux rates (150 LMH) enabled >90% DNA reduction by maintaining these interactions. Solution conductivity significantly influenced performance, with high conductivity screening electrostatic interactions, and the model system closely matching real system outcomes under these conditions. Secondary clarification highlighted material-dependent trade-offs. The PES membranes achieved exceptional AAV2 recovery rates exceeding 90%, while RC membranes excelled in DNA reduction (>80%) due to their respective surface charge and hydrophilic properties. The integration of the primary clarification step dramatically improved PES membrane performance, increasing the final flux from ~60 LMH to ~600 LMH. Fouling analysis revealed that real AAV2 systems experienced more severe and complex fouling compared to the model system, transitioning from intermediate blocking to irreversible cake layer formation, which was exacerbated by nanoscale impurities (~10–600 nm). This work bridges nanomaterial science and biomanufacturing, advancing scalable viral vector purification for gene therapy.more » « less
-
null (Ed.)Surface-sensitive vibrational spectroscopy is a common tool for measuring molecular organization and intermolecular interactions at interfaces. Peak intensity ratios are typically used to extract molecular information from one-dimensional spectra but vibrational coupling between surfactant molecules can manifest as signal depletion in one-dimensional spectra. Through a combination of experiment and theory, we demonstrate the emergence of vibrational exciton delocalization in infrared reflection–absorption spectra of soluble and insoluble surfactants at the air/water interface. Vibrational coupling causes a significant decrease in peak intensities corresponding to C–F vibrational modes of perfluorooctanoic acid molecules. Vibrational excitons also form between arachidic acid surfactants within a compressed monolayer, manifesting as signal reduction of C–H stretching modes. Ionic composition of the aqueous phase impacts surfactant intermolecular distance, thereby modulating vibrational coupling strength between surfactants. Our results serve as a cautionary tale against employing alkyl and fluoroalkyl vibrational peak intensities as proxies for concentration, although such analysis is ubiquitous in interface science.more » « less
An official website of the United States government
