Abstract Primordial black holes (PBHs), theorized to have originated in the early Universe, are speculated to be a viable form of dark matter. If they exist, they should be detectable through photometric and astrometric signals resulting from gravitational microlensing of stars in the Milky Way. Population Synthesis for Compact-object Lensing Events, orPopSyCLE, is a simulation code that enables users to simulate microlensing surveys, and is the first of its kind to include both photometric and astrometric microlensing effects, which are important for potential PBH detection and characterization. To estimate the number of observable PBH microlensing events, we modifyPopSyCLEto include a dark matter halo consisting of PBHs. We detail our PBH population model, and demonstrate ourPopSyCLE+ PBH results through simulations of the Optical Gravitational Lensing Experiment-IV (OGLE-IV) and Nancy Grace Roman Space Telescope (Roman) microlensing surveys. We provide a proof-of-concept analysis for adding PBHs intoPopSyCLE, and thus include many simplifying assumptions, such asfDM, the fraction of dark matter composed of PBHs, and , mean PBH mass. Assuming M⊙, we find ∼3.6fDMtimes as many PBH microlensing events than stellar evolved black hole events, a PBH average peak Einstein crossing time of ∼91.5 days, estimate on order of 102fDMPBH events within the 8 yr OGLE-IV results, and estimate Roman to detect ∼1000fDMPBH microlensing events throughout its planned microlensing survey.
more »
« less
Astrometric Microlensing by Primordial Black Holes with the Roman Space Telescope
Abstract Primordial black holes (PBHs) could explain some fraction of dark matter and shed light on many areas of early-Universe physics. Despite over half a century of research interest, a PBH population has so far eluded detection. The most competitive constraints on the fraction of dark matter comprised of PBHs (fDM) in the (10−9–10)M⊙mass ranges come from photometric microlensing and boundfDM≲ 10−2–10−1. With the advent of the Roman Space Telescope with its submilliarcsecond astrometric capabilities and its planned Galactic Bulge Time Domain Survey (GBTDS), detecting astrometric microlensing signatures will become routine. Compared with photometric microlensing, astrometric microlensing signals are sensitive to different lens masses–distance configurations and contain different information, making it a complimentary lensing probe. At submilliarcsecond astrometric precision, astrometric microlensing signals are typically detectable at larger lens–source separations than photometric signals, suggesting a microlensing detection channel of pure astrometric events. We use a Galactic simulation to predict the number of detectable microlensing events during the GBTDS via this pure astrometric microlensing channel. Assuming an absolute astrometric precision floor for bright stars of 0.1 mas for the GBTDS, we find that the number of detectable events peaks at ≈103fDMfor a population of 1M⊙PBHs and tapers to ≈10fDMand ≈100fDMat 10−4M⊙and 103M⊙, respectively. Accounting for the distinguishability of PBHs from stellar lenses, we conclude the GBTDS will be sensitive to a PBH population atfDMdown to ≈10−1–10−3for (10−1–102)M⊙likely yielding novel PBH constraints.
more »
« less
- Award ID(s):
- 1909641
- PAR ID:
- 10567988
- Publisher / Repository:
- AAS Journals
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 965
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 138
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract From the formation mechanisms of stars and compact objects to nuclear physics, modern astronomy frequently leverages surveys to understand populations of objects to answer fundamental questions. The population of dark and isolated compact objects in the Galaxy contains critical information related to many of these topics, but is only practically accessible via gravitational microlensing. However, photometric microlensing observables are degenerate for different types of lenses, and one can seldom classify an event as involving either a compact object or stellar lens on its own. To address this difficulty, we apply a Bayesian framework that treats lens type probabilistically and jointly with a lens population model. This method allows lens population characteristics to be inferred despite intrinsic uncertainty in the lens class of any single event. We investigate this method’s effectiveness on a simulated ground-based photometric survey in the context of characterizing a hypothetical population of primordial black holes (PBHs) with an average mass of 30M⊙. On simulated data, our method outperforms current black hole (BH) lens identification pipelines and characterizes different subpopulations of lenses while jointly constraining the PBH contribution to dark matter to ≈25%. Key to robust inference, our method can marginalize over population model uncertainty. We find the lower mass cutoff for stellar origin BHs, a key observable in understanding the BH mass gap, particularly difficult to infer in our simulations. This work lays the foundation for cutting-edge PBH abundance constraints to be extracted from current photometric microlensing surveys.more » « less
-
Recent observations of caustic-crossing galaxies at redshift 0.7 ≲ z ≲ 1 show a wealth of transient events. Most of them are believed to be microlensing events of highly magnified stars. Earlier work predicts such events should be common near the critical curves (CCs) of galaxy clusters (“near region”), but some are found relatively far away from these CCs (“far region”). We consider the possibility that substructure on milliarcsecond scales (few parsecs in the lens plane) is boosting the microlensing signal in the far region. We study the combined magnification from the macrolens, millilenses, and microlenses (“3M lensing”), when the macromodel magnification is relatively low (common in the far region). After considering realistic populations of millilenses and microlenses, we conclude that the enhanced microlensing rate around millilenses is not sufficient to explain the high fraction of observed events in the far region. Instead, we find that the shape of the luminosity function (LF) of the lensed stars combined with the amount of substructure in the lens plane determines the number of microlensing events found near and far from the CC. By measuringβ(the exponent of the adopted power law LF,dN/dL = ϕ(L)∝(1/L)β), and the number density of microlensing events at each location, one can create a pseudoimage of the underlying distribution of mass on small scales. We identify two regimes: (i) positive-imaging regime whereβ > 2 and the number density of events is greater around substructures, and (ii) negative-imaging regime whereβ < 2 and the number density of microlensing events is reduced around substructures. This technique opens a new window to map the distribution of dark-matter substructure down to ∼103 M⊙. We study the particular case of seven microlensing events found in the Flashlights program in the Dragon arc (z = 0.725). A population of supergiant stars having a steep LF withβ = 2.55−0.56+0.72fits the distribution of these events in the far and near regions. We also find that the new microlensing events from JWST observations in this arc imply a surface mass density substructure of Σ∗= 54M⊙pc−2, consistent with the expected population of stars from the intracluster medium. We identify a small region of high density of microlensing events, and interpret it as evidence of a possible invisible substructure, for which we derive a mass of ∼1.3 × 108 M⊙(within its Einstein radius) in the galaxy cluster.more » « less
-
Abstract We present the analysis of five black hole candidates identified from gravitational microlensing surveys. Hubble Space Telescope astrometric data and densely sampled light curves from ground-based microlensing surveys are fit with a single-source, single-lens microlensing model in order to measure the mass and luminosity of each lens and determine if it is a black hole. One of the five targets (OGLE-2011-BLG-0462/MOA-2011-BLG-191 or OB110462 for short) shows a significant >1 mas coherent astrometric shift, little to no lens flux, and has an inferred lens mass of 1.6–4.4M⊙. This makes OB110462 the first definitive discovery of a compact object through astrometric microlensing and it is most likely either a neutron star or a low-mass black hole. This compact-object lens is relatively nearby (0.70–1.92 kpc) and has a slow transverse motion of <30 km s−1. OB110462 shows significant tension between models well fit to photometry versus astrometry, making it currently difficult to distinguish between a neutron star and a black hole. Additional observations and modeling with more complex system geometries, such as binary sources, are needed to resolve the puzzling nature of this object. For the remaining four candidates, the lens masses are <2M⊙, and they are unlikely to be black holes; two of the four are likely white dwarfs or neutron stars. We compare the full sample of five candidates to theoretical expectations on the number of black holes in the Milky Way (∼108) and find reasonable agreement given the small sample size.more » « less
-
ABSTRACT We describe a search for gravitational waves from compact binaries with at least one component with mass $0.2$$–$$1.0 \, \mathrm{M}_\odot$$ and mass ratio q ≥ 0.1 in Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) and Advanced Virgo data collected between 2019 November 1, 15:00 utc and 2020 March 27, 17:00 utc. No signals were detected. The most significant candidate has a false alarm rate of $$0.2 \, \rm {yr}^{-1}$$. We estimate the sensitivity of our search over the entirety of Advanced LIGO’s and Advanced Virgo’s third observing run, and present the most stringent limits to date on the merger rate of binary black holes with at least one subsolar-mass component. We use the upper limits to constrain two fiducial scenarios that could produce subsolar-mass black holes: primordial black holes (PBH) and a model of dissipative dark matter. The PBH model uses recent prescriptions for the merger rate of PBH binaries that include a rate suppression factor to effectively account for PBH early binary disruptions. If the PBHs are monochromatically distributed, we can exclude a dark matter fraction in PBHs $$f_\mathrm{PBH} \gtrsim \, 0.6$$ (at 90 per cent confidence) in the probed subsolar-mass range. However, if we allow for broad PBH mass distributions, we are unable to rule out fPBH = 1. For the dissipative model, where the dark matter has chemistry that allows a small fraction to cool and collapse into black holes, we find an upper bound fDBH < 10−5 on the fraction of atomic dark matter collapsed into black holes.more » « less