skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: First-principles study of the electronic structure, Z 2 invariant, and quantum oscillation in the kagome material CsV3Sb5
This work presents a detailed study of the electronic structure, phonon dispersion, Z2 invariant calculation, and Fermi surface of the newly discovered kagome superconductor CsV3Sb5, using density functional theory. The phonon dispersion in the pristine state reveals two negative modes at the M and L points of the Brillouin zone, indicating lattice instability. CsV3Sb5 transitions into a structurally stable 2 × 2 × 1 charge density wave (CDW) phase, confirmed by positive phonon modes. The electronic band structure shows several Dirac points near the Fermi level, with a narrow gap opening due to spin–orbit coupling (SOC), although the effect of SOC on other bands is minimal. In the pristine phase, this material exhibits a quasi-2D cylindrical Fermi surface, which undergoes reconstruction in the CDW phase. We calculated quantum oscillation frequencies using Onsager’s relation, finding good agreement with experimental results in the CDW phase. To explore the topological properties of CsV3Sb5, we computed the Z2 invariant in both pristine and CDW phases, resulting in a value of (ν0; ν1ν2ν3) = (1; 000), suggesting the strong topological nature of this material. Our detailed analysis of phonon dispersion, electronic bands, Fermi surface mapping, and Z2 invariant provides insights into the topological properties, CDW order, and unconventional superconductivity in AV3Sb5 (A = K, Rb, and Cs).  more » « less
Award ID(s):
2336011
PAR ID:
10568231
Author(s) / Creator(s):
; ; ; ;
Editor(s):
NA
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
APL Quantum
Volume:
1
Issue:
4
ISSN:
2835-0103
Subject(s) / Keyword(s):
Topological phonon dispersion Fermi surface
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Topological semimetals represent a novel class of quantum materials displaying non‐trivial topological states that host Dirac/Weyl fermions. The intersection of Dirac/Weyl points gives rise to essential properties in a wide range of innovative transport phenomena, including extreme magnetoresistance, high mobilities, weak antilocalization, electron hydrodynamics, and various electro‐optical phenomena. In this study, the electronic, transport, phonon scattering, and interrelationships are explored in single crystals of the topological semimetal HfAs2. It reveals a weak antilocalization effect at low temperatures with high carrier density, which is attributed to perfectly compensated topological bulk and surface states. The angle‐resolved photoemission spectroscopy (ARPES) results show anisotropic Fermi surfaces and surface states indicative of the topological semimetal, further confirmed by first‐principle density functional theory (DFT) calculations. Moreover, the lattice dynamics in HfAs2are investigated both with the Raman scattering and density functional theory. The phonon dispersion, density of states, lattice thermal conductivity, and the phonon lifetimes are computed to support the experimental findings. The softening of phonons, the broadening of Raman modes, and the reduction of phonon lifetimes with temperature suggest the enhancement of phonon anharmonicity in this new topological material, which is crucial for boosting the thermoelectric performance of topological semimetals. 
    more » « less
  2. Abstract This study presents a thorough analysis of the electronic structures of the TaPxAs1−xseries of compounds, which are of significant interest due to their potential as topological materials. Using a combination of first principles and Wannier‐based tight‐binding methods, this study investigates both the bulk and surface electronic structures of the compounds for varying compositions (x = 0, 0.25, 0.50, 0.75, 1), with a focus on their topological properties. By using chirality analysis, (111) surface electronic structure analysis, and surface Fermi arcs analysis, it is established that the TaPxAs1−xcompounds exhibit topologically nontrivial behavior, characterized as Weyl semimetals (WSMs). The effect of spin–orbit coupling (SOC) on the topological properties of the compounds is further studied. In the absence of SOC, the compounds exhibit linearly dispersive fourfold degenerate points in the first Brillouin zone (FBZ) resembling Dirac semimetals. However, the introduction of SOC induces a phase transition to WSM states, with the number and position of Weyl points (WPs) varying depending on the composition of the alloy. For example, TaP has 12 WPs in the FBZ. The findings provide novel insights into the electronic properties of TaPxAs1−xcompounds and their potential implications for the development of topological materials for various technological applications. 
    more » « less
  3. Abstract As one of the most fundamental physical phenomena, charge density wave (CDW) order predominantly occurs in metallic systems such as quasi‐1D metals, doped cuprates, and transition metal dichalcogenides, where it is well understood in terms of Fermi surface nesting and electron–phonon coupling mechanisms. On the other hand, CDW phenomena in semiconducting systems, particularly at the low carrier concentration limit, are less common and feature intricate characteristics, which often necessitate the exploration of novel mechanisms, such as electron–hole coupling or Mott physics, to explain. In this study, an approach combining electrical transport, synchrotron X‐ray diffraction, and density‐functional theory calculations is used to investigate CDW order and a series of hysteretic phase transitions in a diluted‐band semiconductor, BaTiS3. These experimental and theoretical findings suggest that the observed CDW order and phase transitions in BaTiS3may be attributed to both electron–phonon coupling and non‐negligible electron–electron interactions in the system. This work highlights BaTiS3as a unique platform to explore CDW physics and novel electronic phases in the dilute filling limit and opens new opportunities for developing novel electronic devices. 
    more » « less
  4. Charge density wave (CDW) order is an emergent quantum phase that is characterized by periodic lattice distortion and charge density modulation, often present near superconducting transitions. Here, we uncover a novel inverted CDW state by using a femtosecond laser to coherently reverse the star-of-David lattice distortion in 1T-TaSe2. We track the signature of this novel CDW state using time- and angle-resolved photoemission spectroscopy and the time-dependent density functional theory to validate that it is associated with a unique lattice and charge arrangement never before realized. The dynamic electronic structure further reveals its novel properties that are characterized by an increased density of states near the Fermi level, high metallicity, and altered electron–phonon couplings. Our results demonstrate how ultrafast lasers can be used to create unique states in materials by manipulating charge-lattice orders and couplings. 
    more » « less
  5. NA (Ed.)
    This study investigates the electronic structure of the kagome metal YbTi3Bi4 using high-field torque magnetometry. The torque signal measured at a maximum field of 41.5 T reveals clear de Haas–van Alphen (dHvA) oscillations with a major frequency peak at Fδ ∼ 130 T. By rotating the sample at various tilt angles θ, we observed that Fδ exhibits a nearly 1/cosθ dependence, indicating the presence of a quasi-two-dimensional (2D) Fermi surface (FS) in YbTi3Bi4. This argument is further supported by the detection of a forward-leaning, sawtoothlike waveform in the dHvA effect, a hallmark of 2D FS characteristics. Notably, we identified two high-frequency peaks near Fχ ∼ 1900 T and Fλ ∼ 5600 T; however, these peaks quickly disappear at θ greater than 21◦. To better understand experimental observations, we computed the electronic band structure and FS using ab initio density-functional theory (DFT). The electronic bands reveal the presence of several Dirac points, flat bands, and van Hove singularities near the Fermi level. Five bands cross the Fermi level and contribute to the FS of this material. The FS comprises cylindrical sheets, with theoretical frequencies from the FS pockets aligning well with the experimental dHvA frequencies. Several FS parameters characterizing Fδ were determined by analyzing the temperature and field dependence of the dHvA oscillations using the Lifshitz-Kosevich theory. The detailed electronic properties presented in this work provide critical insights into the electronic structure of YbTi3Bi4 and other titanium-based kagome compounds. 
    more » « less