Abstract In 1970, Schneider introduced the$$m$$ th order difference body of a convex body, and also established the$$m$$ th-order Rogers–Shephard inequality. In this paper, we extend this idea to the projection body, centroid body, and radial mean bodies, as well as prove the associated inequalities (analogues of Zhang’s projection inequality, Petty’s projection inequality, the Busemann–Petty centroid inequality and Busemann’s random simplex inequality). We also establish a new proof of Schneider’s$$m$$ th-order Rogers–Shephard inequality. As an application, a$$m$$ th-order affine Sobolev inequality for functions of bounded variation is provided.
more »
« less
This content will become publicly available on December 20, 2025
From intersection bodies to dual centroid bodies: A stochastic approach to isoperimetry
We establish a family of isoperimetric inequalities for sets that interpolate between intersection bodies and dualL_{p}-centroid bodies. This provides a bridge between the Busemann intersection inequality and the Lutwak–Zhang inequality. The approach depends on new empirical versions of these inequalities.
more »
« less
- Award ID(s):
- 2105468
- PAR ID:
- 10568671
- Publisher / Repository:
- EMS Press
- Date Published:
- Journal Name:
- Journal of the European Mathematical Society
- ISSN:
- 1435-9855
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We prove an extension of Szarek’s optimal Khinchin inequality (1976) for distributions close to the Rademacher one, when all the weights are uniformly bounded by a$$1/\sqrt{2}$$ fraction of their total$$\ell _2$$ -mass. We also show a similar extension of the probabilistic formulation of Ball’s cube slicing inequality (1986). These results establish the distributional stability of these optimal Khinchin-type inequalities. The underpinning to such estimates is the Fourier-analytic approach going back to Haagerup (1981).more » « less
-
Abstract Let$$f$$ be an analytic polynomial of degree at most$$K-1$$ . A classical inequality of Bernstein compares the supremum norm of$$f$$ over the unit circle to its supremum norm over the sampling set of the$$K$$ -th roots of unity. Many extensions of this inequality exist, often understood under the umbrella of Marcinkiewicz–Zygmund-type inequalities for$$L^{p},1\le p\leq \infty $$ norms. We study dimension-free extensions of these discretization inequalities in the high-dimension regime, where existing results construct sampling sets with cardinality growing with the total degree of the polynomial. In this work we show that dimension-free discretizations are possible with sampling sets whose cardinality is independent of$$\deg (f)$$ and is instead governed by the maximumindividualdegree of$$f$$ ;i.e., the largest degree of$$f$$ when viewed as a univariate polynomial in any coordinate. For example, we find that for$$n$$ -variate analytic polynomials$$f$$ of degree at most$$d$$ and individual degree at most$$K-1$$ ,$$\|f\|_{L^{\infty }(\mathbf{D}^{n})}\leq C(X)^{d}\|f\|_{L^{\infty }(X^{n})}$$ for any fixed$$X$$ in the unit disc$$\mathbf{D}$$ with$$|X|=K$$ . The dependence on$$d$$ in the constant is tight for such small sampling sets, which arise naturally for example when studying polynomials of bounded degree coming from functions on products of cyclic groups. As an application we obtain a proof of the cyclic group Bohnenblust–Hille inequality with an explicit constant$$\mathcal{O}(\log K)^{2d}$$ .more » « less
-
Abstract Let$$\mathrm {R}$$be a real closed field. Given a closed and bounded semialgebraic set$$A \subset \mathrm {R}^n$$and semialgebraic continuous functions$$f,g:A \rightarrow \mathrm {R}$$such that$$f^{-1}(0) \subset g^{-1}(0)$$, there exist an integer$$N> 0$$and$$c \in \mathrm {R}$$such that the inequality (Łojasiewicz inequality)$$|g(x)|^N \le c \cdot |f(x)|$$holds for all$$x \in A$$. In this paper, we consider the case whenAis defined by a quantifier-free formula with atoms of the form$$P = 0, P>0, P \in \mathcal {P}$$for some finite subset of polynomials$$\mathcal {P} \subset \mathrm {R}[X_1,\ldots ,X_n]_{\leq d}$$, and the graphs of$$f,g$$are also defined by quantifier-free formulas with atoms of the form$$Q = 0, Q>0, Q \in \mathcal {Q}$$, for some finite set$$\mathcal {Q} \subset \mathrm {R}[X_1,\ldots ,X_n,Y]_{\leq d}$$. We prove that the Łojasiewicz exponent in this case is bounded by$$(8 d)^{2(n+7)}$$. Our bound depends ondandnbut is independent of the combinatorial parameters, namely the cardinalities of$$\mathcal {P}$$and$$\mathcal {Q}$$. The previous best-known upper bound in this generality appeared inP. Solernó, Effective Łojasiewicz Inequalities in Semi-Algebraic Geometry, Applicable Algebra in Engineering, Communication and Computing (1991)and depended on the sum of degrees of the polynomials defining$$A,f,g$$and thus implicitly on the cardinalities of$$\mathcal {P}$$and$$\mathcal {Q}$$. As a consequence, we improve the current best error bounds for polynomial systems under some conditions. Finally, we prove a version of Łojasiewicz inequality in polynomially bounded o-minimal structures. We prove the existence of a common upper bound on the Łojasiewicz exponent for certain combinatorially defined infinite (but not necessarily definable) families of pairs of functions. This improves a prior result of Chris Miller (C. Miller, Expansions of the real field with power functions, Ann. Pure Appl. Logic (1994)).more » « less
-
Abstract By the Aharonov–Casher theorem, the Pauli operatorPhas no zero eigenvalue when the normalized magnetic flux$$\alpha $$ satisfies$$|\alpha |<1$$ , but it does have a zero energy resonance. We prove that in this case a Lieb–Thirring inequality for the$$\gamma $$ -th moment of the eigenvalues of$$P+V$$ is valid under the optimal restrictions$$\gamma \ge |\alpha |$$ and$$\gamma >0$$ . Besides the usual semiclassical integral, the right side of our inequality involves an integral where the zero energy resonance state appears explicitly. Our inequality improves earlier works that were restricted to moments of order$$\gamma \ge 1$$ .more » « less
An official website of the United States government
