skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on December 18, 2025

Title: Hydrocarbon metabolism and petroleum seepage as ecological and evolutionary drivers for Cycloclasticus
Aqueous-soluble hydrocarbons dissolve into the ocean’s interior and structure deep-sea microbial populations influenced by natural oil seeps and spills. n-Pentane is a seawater-soluble, volatile compound abundant in petroleum products and reservoirs and will partially partition to the deep-water column following release from the seafloor. In this study, we explore the ecology and niche partitioning of two free-living Cycloclasticus strains recovered from seawater incubations with n-pentane and distinguish them as an open ocean variant and a seep-proximal variant, each with distinct capabilities for hydrocarbon catabolism. Comparative metagenomic analysis indicates the variant more frequently observed further from natural seeps encodes more general pathways for hydrocarbon consumption, including short-chain alkanes, aromatics, and long-chain alkanes, and also possesses redox versatility in the form of respiratory nitrate reduction and thiosulfate oxidation; in contrast, the seep variant specializes in short-chain alkanes and relies strictly on oxygen as the terminal electron acceptor. Both variants observed in our work were dominant ecotypes of Cycloclasticus observed during the Deepwater Horizon disaster, a conclusion supported by 16S rRNA gene analysis and read-recruitment of sequences collected from the submerged oil plume during active flow. A comparative genomic analysis of Cycloclasticus across various ecosystems suggests distinct strategies for hydrocarbon transformations among each clade. Our findings suggest Cycloclasticus is a versatile and opportunistic consumer of hydrocarbons and may have a greater role in the cycling of sulfur and nitrogen, thus contributing broad ecological impact to various ecosystems globally.  more » « less
Award ID(s):
2126625
PAR ID:
10568761
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
The ISME Journal
Date Published:
Journal Name:
The ISME Journal
ISSN:
1751-7362
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Methane seeps are highly abundant marine habitats that contribute sources of chemosynthetic primary production to marine ecosystems. Seeps also factor into the global budget of methane, a potent greenhouse gas. Because of these factors, methane seeps influence not only local ocean ecology, but also biogeochemical cycles on a greater scale. Methane seeps host specialized microbial communities that vary significantly based on geography, seep gross morphology, biogeochemistry, and a diversity of other ecological factors including cross-domain species interactions. In this study, we collected sediment cores from six seep and non-seep locations from Grays and Quinault Canyons (46–47°N) off Washington State, USA, as well as one non-seep site off the coast of Oregon, USA (45°N) to quantify the scale of seep influence on biodiversity within marine habitats. These samples were profiled using 16S rRNA gene sequencing. Predicted gene functions were generated using the program PICRUSt2, and the community composition and predicted functions were compared among samples. The microbial communities at seeps varied by seep morphology and habitat, whereas the microbial communities at non-seep sites varied by water depth. Microbial community composition and predicted gene function clearly transitioned from on-seep to off-seep in samples collected from transects moving away from seeps, with a clear ecotone and high diversity where methane-fueled habitats transition into the non-seep deep sea. Our work demonstrates the microbial and metabolic sphere of influence that extends outwards from methane seep habitats. 
    more » « less
  2. Methane seeps are highly productive ecosystems that provide carbon sequestration services, host diverse communities including endemic species, and serve as habitats for commercial fisheries. Little is known about the economic value the public places on them. Discrete Choice Experiments (DCEs) are administered to a sample of Costa Rican taxpayers to evaluate their willingness to pay (WTP) in monetary terms using tradeoffs made in a survey context involving three of the main attributes of methane seep ecosystems to provide insights for future conservation and management efforts. Extensive effort is devoted to understanding how Costa Ricans view different aspects of the deep sea. We find that they associate it with strange animals, natural resources, the unknown, and being far from reach. Perhaps surprisingly, they underestimate how much they know about the deep sea. We find that WTP for methane seep protection is the highest for programs that protect seeps with endemic species, followed by seeps with high climate change mitigation potential and commercial fishing habitat. Higher-income groups and women are more likely to prefer options that increase the current level of protection. We discuss how science communication and community engagement contribute to care expressed toward the deep sea. 
    more » « less
  3. As biodiversity loss accelerates globally, understanding environmental influence over biodiversity–ecosystem functioning (BEF) relationships becomes crucial for ecosystem management. Theory suggests that resource supply affects the shape of BEF relationships, but this awaits detailed investigation in marine ecosystems. Here, we use deep-sea chemosynthetic methane seeps and surrounding sediments as natural laboratories in which to contrast relationships between BEF proxies along with a gradient of trophic resource availability (higher resource methane seep, to lower resource photosynthetically fuelled deep-sea habitats). We determined sediment fauna taxonomic and functional trait biodiversity, and quantified bioturbation potential (BPc), calcification degree, standing stock and density as ecosystem functioning proxies. Relationships were strongly unimodal in chemosynthetic seep habitats, but were undetectable in transitional ‘chemotone’ habitats and photosynthetically dependent deep-sea habitats. In seep habitats, ecosystem functioning proxies peaked below maximum biodiversity, perhaps suggesting that a small number of specialized species are important in shaping this relationship. This suggests that absolute biodiversity is not a good metric of ecosystem ‘value’ at methane seeps, and that these deep-sea environments may require special management to maintain ecosystem functioning under human disturbance. We promote further investigation of BEF relationships in non-traditional resource environments and emphasize that deep-sea conservation should consider ‘functioning hotspots' alongside biodiversity hotspots. 
    more » « less
  4. Deep-sea methane seeps host highly diverse microbial communities whose biological diversity is distinct from other marine habitats. Coupled with microbial community analysis, untargeted metabolomics of environmental samples using high resolution tandem mass spectrometry provides unprecedented access to the unique specialized metabolisms of these chemosynthetic microorganisms. In addition, the diverse microbial natural products are of broad interest due to their potential applications for human and environmental health and well-being. In this exploratory study, sediment cores were collected from two methane seeps (-1000 m water depth) with very different gross geomorphologies, as well as a non-seep control site. Cores were subjected to parallel metabolomic and microbial community analyses to assess the feasibility of representative metabolite detection and identify congruent patterns between metabolites and microbes. Metabolomes generated using high resolution liquid chromatography tandem mass spectrometry were annotated with predicted structure classifications of the majority of mass features using SIRIUS and CANOPUS. The microbiome was characterized by analysis of 16S rRNA genes and analyzed both at the whole community level, as well as the small subgroup of Actinobacteria, which are known to produce societally useful compounds. Overall, the younger Dagorlad seep possessed a greater abundance of metabolites while there was more variation in abundance, number, and distribution of metabolites between samples at the older Emyn Muil seep. Lipid and lipid-like molecules displayed the greatest variation between sites and accounted for a larger proportion of metabolites found at the older seep. Overall, significant differences in composition of the microbial community mirrored the patterns of metabolite diversity within the samples; both varied greatly as a function of distance from methane seep, indicating a deterministic role of seepage. Interdisciplinary research to understand microbial and metabolic diversity is essential for understanding the processes and role of ubiquitous methane seeps in global systems and here we increase understanding of these systems by visualizing some of the chemical diversity that seeps add to marine systems. 
    more » « less
  5. null (Ed.)
    Cold seeps and hydrothermal vents are seafloor habitats fueled by subsurface energy sources. Both habitat types coexist in Guaymas Basin in the Gulf of California, providing an opportunity to compare microbial communities with distinct physiologies adapted to different thermal regimes. Hydrothermally active sites in the southern Guaymas Basin axial valley, and cold seep sites at Octopus Mound, a carbonate mound with abundant methanotrophic cold seep fauna at the Central Seep location on the northern off-axis flanking regions, show consistent geochemical and microbial differences between hot, temperate, cold seep, and background sites. The changing microbial actors include autotrophic and heterotrophic bacterial and archaeal lineages that catalyze sulfur, nitrogen, and methane cycling, organic matter degradation, and hydrocarbon oxidation. Thermal, biogeochemical, and microbiological characteristics of the sampling locations indicate that sediment thermal regime and seep-derived or hydrothermal energy sources structure the microbial communities at the sediment surface. 
    more » « less