Abstract A range of stellar explosions, including supernovae (SNe), tidal disruption events (TDE), and fast blue optical transients (FBOTs), can occur in dusty environments initially opaque to transients’ optical/UV light, becoming visible only once the dust is destroyed by transients’ rising luminosity. We present axisymmetric, time-dependent radiation transport simulations of dust-shrouded transients withAthena++and tabulated gray opacities, predicting the light curves of the dust-reprocessed infrared (IR) radiation. The luminosity and timescale of the IR light curve depend on whether the transient rises rapidly or slowly compared to the light-crossing time of the photosphere,tlc. For slow-rising transients (trise ≫ tlc) like SNe, the reprocessed IR radiation diffuses outward through the dust shell faster than the shell sublimates; the IR light curve therefore begins rising prior to the escape of UV/optical light, but peaks on a timescale ∼triseshorter than the transient duration. By contrast, for fast-rising transients (trise ≪ tlc) such as FBOTs and some TDEs, the finite light-travel time results in the reprocessed radiation arriving as an “echo” lasting much longer than the transient itself. We explore the effects of the system geometry by considering a torus-shaped distribution of dust. The IR light curves seen by observers in the equatorial plane of the torus resemble those for a spherical dust shell, while polar observers see faster-rising, brighter, and shorter-lived emission. We successfully model the IR excess seen in AT2018cow as a dust echo, supporting the presence of an opaque dusty medium surrounding FBOTs prior to explosion.
more »
« less
Unraveling the Dusty Environment around RT Vir
Abstract Infrared (IR) studies of asymptotic giant branch (AGB) stars are critical to our understanding of the formation of cosmic dust. In this investigation, we explore the mid- to far-IR emission of the oxygen-rich AGB star RT Virginis. This optically thin dusty environment has unusual spectral features when compared to other stars in its class. To explore this enigmatic object we use the one-dimensional radiative transfer modeling code DUSTY. Modeled spectra are compared with observations from the Infrared Space Observatory, InfraRed Astronomical Satellite, the Herschel Space Observatory, and a host of other sources to determine the properties of RT Vir's circumstellar material. Our models suggest a set of two distant and cool dust shells at low optical depths (τV,inner= 0.16,τV,outer= 0.06), with inner dust temperaturesT1= 330 K,T3= 94 K. Overall, these dust shells exhibit a chemical composition consistent with dust typically found around O-rich AGB stars. However, the distribution of materials differs significantly. The inner shell consists of a mixture of silicates, Al2O3, FeO, and Fe, while the outer shell primarily contains crystalline Al2O3polymorphs. This chemical change is indicative of two distinct epochs of dust formation around RT Vir. These changes in dust composition are driven by either changes in the pressure–temperature conditions around the star or by a decrease in the C/O ratio due to hot-bottom burning.
more »
« less
- Award ID(s):
- 2106926
- PAR ID:
- 10568910
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 979
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 242
- Size(s):
- Article No. 242
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract M64, often called the “Evil Eye” galaxy, is unique among local galaxies. Beyond its dramatic, dusty nucleus, it also hosts an outer gas disk that counter-rotates relative to its stars. The mass of this outer disk is comparable to the gas content of the Small Magellanic Cloud (SMC), prompting the idea that it was likely accreted in a recent minor merger. Yet, detailed follow-up studies of M64's outer disk have shown no evidence of such an event, leading to other interpretations, such as a “flyby” interaction with the distant diffuse satellite Coma P. We present Subaru Hyper Suprime-Cam observations of M64's stellar halo, which resolve its stellar populations and reveal a spectacular radial shell feature, oriented ∼30° relative to the major axis and along the rotation axis of the outer gas disk. The shell is ∼45 kpc southeast of M64, while a similar but more diffuse plume to the northwest extends to >100 kpc. We estimate a stellar mass and metallicity for the southern shell ofM⋆= 1.80 ± 0.54 × 108M⊙and [M/H] = −1.0, respectively, and a similar mass of 1.42 ± 0.71 × 108M⊙for the northern plume. Taking into account the accreted material in M64's inner disk, we estimate a total stellar mass for the progenitor satellite ofM⋆,prog≃ 5 × 108M⊙. These results suggest that M64 is in the final stages of a minor merger with a gas-rich satellite strikingly similar to the SMC, in which M64's accreted counter-rotating gas originated, and which is responsible for the formation of its dusty inner star-forming disk.more » « less
-
Water vapor (H2O) is one of the brightest molecular emitters after carbon monoxide (CO) in galaxies with high infrared (IR) luminosity, allowing us to investigate the warm and dense phase of the interstellar medium (ISM) where star formation occurs. However, due to the complexity of its radiative spectrum, H2O is not frequently exploited as an ISM tracer in distant galaxies. Therefore, H2O studies of the warm and dense gas at high-zremain largely unexplored. In this work, we present observations conducted with the Northern Extended Millimeter Array (NOEMA) toward threez > 6 IR-bright quasarsJ2310+1855,J1148+5251, andJ0439+1634targeted in their multiple para- and ortho-H2O transitions (312 − 303, 111 − 000, 220 − 211, and 422 − 413), as well as their far-IR (FIR) dust continuum. By combining our data with previous measurements from the literature, we estimated the dust masses and temperatures, continuum optical depths, IR luminosities, and star formation rates (SFR) from the FIR continuum. We modeled the H2O lines using the MOLPOP-CEP radiative transfer code, finding that water vapor lines in our quasar host galaxies are primarily excited in the warm, dense (with a gas kinetic temperature and density ofTkin = 50 K,nH2 ∼ 104.5 − 105 cm−3) molecular medium with a water vapor column density ofNH2O ∼ 2 × 1017 − 3 × 1018 cm−3. High-JH2O lines are mainly radiatively pumped by the intense optically-thin far-IR radiation field associated with a warm dust component at temperatures ofTdust ∼ 80 − 190 K that account for < 5 − 10% of the total dust mass. In the case of J2310+1855, our analysis points to a relatively high value of the continuum optical depth at 100 μm (τ100 ∼ 1). Our results are in agreement with expectations based on the H2O spectral line energy distribution of local and high-zultra-luminous IR galaxies and active galactic nuclei (AGN). The analysis of the Boltzmann diagrams highlights the interplay between collisions and IR pumping in populating the high H2O energy levels and it allows us to directly compare the excitation conditions in the targeted quasar host galaxies. In addition, the observations enable us to sample the high-luminosity part of the H2O–total-IR (TIR) luminosity relations (LH2O − LTIR). Overall, our results point to supralinear trends that suggest H2O–TIR relations are likely driven by IR pumping, rather than the mere co-spatiality between the FIR continuum- and line-emitting regions. The observedLH2O/LTIRratios in ourz > 6 quasars do not show any strong deviations with respect to those measured in star-forming galaxies and AGN at lower redshifts. This supports the notion that H2O can be likely used to trace the star formation activity buried deep within the dense molecular clouds.more » « less
-
Context.T Tauri stars are low-mass young stars whose disks provide the setting for planet formation, which is one of the most fundamental processes in astronomy. Yet the mechanisms of this are still poorly understood. SU Aurigae is a widely studied T Tauri star and here we present original state-of-the-art interferometric observations with better uv and baseline coverage than previous studies. Aims.We aim to investigate the characteristics of the circumstellar material around SU Aur, and constrain the disk geometry, composition and inner dust rim structure. Methods.The MIRC-X instrument at CHARA is a six-telescope optical beam combiner offering baselines up to 331 m. We undertook image reconstruction for model-independent analysis, and fitted geometric models such as Gaussian and ring distributions. Additionally, the fitting of radiative transfer models constrained the physical parameters of the disk. Results.Image reconstruction reveals a highly inclined disk with a slight asymmetry consistent with inclination effects obscuring the inner disk rim through absorption of incident star light on the near side and thermal re-emission/scattering of the far side. Geometric models find that the underlying brightness distribution is best modelled as a Gaussian with a Full-Width Half-Maximum of 1.53 ± 0.01 mas at an inclination of 56.9 ± 0.4° and a minor axis position angle of 55.9 ± 0.5°. Radiative transfer modelling shows a flared disk with an inner radius at 0.16 au which implies a grain size of 0.14 μm assuming astronomical silicates and a scale height of 9.0 au at 100 au. In agreement with the literature, only the dusty disk wind successfully accounts for the near infrared excess by introducing dust above the mid-plane. Conclusions.Our results confirm and provide better constraints than previous inner disk studies of SU Aurigae. We confirm the presence of a dusty disk wind in the cicumstellar environment, the strength of which is enhanced by a late infall event which also causes very strong misalignments between the inner and outer disks.more » « less
-
Abstract Transition disks, with inner regions depleted in dust and gas, could represent later stages of protoplanetary disk evolution when newly formed planets are emerging. The PDS 70 system has attracted particular interest because of the presence of two giant planets in orbits at tens of astronomical units within the inner disk cavity, at least one of which is itself accreting. However, the region around PDS 70 most relevant to understanding the planet populations revealed by exoplanet surveys of middle-aged stars is the inner disk, which is the dominant source of the system’s excess infrared emission but only marginally resolved by the Atacama Large Millimeter/submillimeter Array. Here we present and analyze time-series optical and infrared photometry and spectroscopy that reveal the inner disk to be dynamic on timescales of days to years, with occultation by submicron dust dimming the star at optical wavelengths, and 3–5μm emission varying due to changes in disk structure. Remarkably, the infrared emission from the innermost region (nearly) disappears for ∼1 yr. We model the spectral energy distribution of the system and its time variation with a flattened warm (T≲ 600 K) disk and a hotter (1200 K) dust that could represent an inner rim or wall. The high dust-to-gas ratio of the inner disk, relative to material accreting from the outer disk, means that the former could be a chimera consisting of depleted disk gas that is subsequently enriched with dust and volatiles produced by collisions and evaporation of planetesimals in the inner zone.more » « less
An official website of the United States government
