Abstract Intermediate filaments (IFs) formed by vimentin are less understood than their cytoskeletal partners, microtubules and F‐actin, but the unique physical properties of IFs, especially their resistance to large deformations, initially suggest a mechanical function. Indeed, vimentin IFs help regulate cell mechanics and contractility, and in crowded 3D environments they protect the nucleus during cell migration. Recently, a multitude of studies, often using genetic or proteomic screenings show that vimentin has many non‐mechanical functions within and outside of cells. These include signaling roles in wound healing, lipogenesis, sterol processing, and various functions related to extracellular and cell surface vimentin. Extracellular vimentin is implicated in marking circulating tumor cells, promoting neural repair, and mediating the invasion of host cells by viruses, including SARS‐CoV, or bacteria such asListeriaandStreptococcus. These findings underscore the fundamental role of vimentin in not only cell mechanics but also a range of physiological functions. Also see the video abstract herehttps://youtu.be/YPfoddqvz-g.
more »
« less
Vimentin supports cell polarization by enhancing centrosome function and microtubule acetylation
Cell polarity is important for controlling cell shape, motility and cell division processes. Vimentin intermediate filaments are important for cell migration and cell polarization in mesenchymal cells and assembly of vimentin and microtubule networks is dynamically coordinated, but the precise details of how vimentin mediates cell polarity remain unclear. Here, we characterize the effects of vimentin on the structure and function of the centrosome and the stability of microtubule filaments in wild-type and vimentin-null mouse embryonic fibroblasts. We find that vimentin mediates the structure of the pericentriolar material, promotes centrosome-mediated microtubule regrowth and increases the level of stable acetylated microtubules in the cell. Loss of vimentin also impairs centrosome repositioning during cell polarization and migration processes that occur during wound closure. Our results suggest that vimentin modulates centrosome structure and function as well as microtubule network stability, which has important implications for how cells establish proper cell polarization and persistent migration.
more »
« less
- Award ID(s):
- 2238600
- PAR ID:
- 10568935
- Publisher / Repository:
- Interface
- Date Published:
- Journal Name:
- Journal of The Royal Society Interface
- Volume:
- 21
- Issue:
- 215
- ISSN:
- 1742-5662
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The septin cytoskeleton has been demonstrated to interact with other cytoskeletal components to regulate various cellular processes, including cell migration. However, the mechanisms of how septin regulates cell migration are not fully understood. In this study, we use the highly migratory neural crest cells of frog embryos to examine the role of septin filaments in cell migration. We found that septin filaments are required for the proper migration of neural crest cells by controlling both the speed and the direction of cell migration. We further determined that septin filaments regulate these features of cell migration by interacting with actin stress fibers. In neural crest cells, septin filaments co-align with actin stress fibers, and the loss of septin filaments leads to impaired stability and contractility of actin stress fibers. In addition, we showed that a partial loss of septin filaments leads to drastic changes in the orientations of newly formed actin stress fibers, suggesting that septin filaments help maintain the persistent orientation of actin stress fibers during directed cell migration. Lastly, our study revealed that these activities of septin filaments depend on Cdc42ep1, which colocalizes with septin filaments in the center of neural crest cells. Cdc42ep1 interacts with septin filaments in a reciprocal manner, with septin filaments recruiting Cdc42ep1 to the cell center and Cdc42ep1 supporting the formation of septin filaments.more » « less
-
Polyploidal giant cancer cells (PGCCs) are multinucleated chemoresistant cancer cells found in heterogeneous solid tumors. Due in part to their apparent dormancy, the effect of PGCCs on cancer progression has remained largely unstudied. Recent studies have highlighted the critical role of PGCCs as aggressive and chemoresistant cancer cells, as well as their ability to undergo amitotic budding to escape dormancy. Our recent study demonstrated the unique biophysical properties of PGCCs, as well as their unusual migratory persistence. Here we unveil the critical function of vimentin intermediate filaments (VIFs) in maintaining the structural integrity of PGCCs and enhancing their migratory persistence. We performed in-depth single-cell analysis to examine the distribution of VIFs and their role in migratory persistence. We found that PGCCs rely heavily on their uniquely distributed and polarized VIF network to enhance their transition from a jammed to an unjammed state to allow for directional migration. Both the inhibition of VIFs with acrylamide and small interfering RNA knockdown of vimentin significantly decreased PGCC migration and resulted in a loss of PGCC volume. Because PGCCs rely on their VIF network to direct migration and to maintain their enlarged morphology, targeting vimentin or vimentin cross-linking proteins could provide a therapeutic approach to mitigate the impact of these chemoresistant cells in cancer progression and to improve patient outcomes with chemotherapy.more » « less
-
The cytoskeleton is a complex network of interconnected biopolymers consisting of actin filaments, microtubules, and intermediate filaments. These biopolymers work in concert to transmit cell-generated forces to the extracellular matrix required for cell motility, wound healing, and tissue maintenance. While we know cell-generated forces are driven by actomyosin contractility and balanced by microtubule network resistance, the effect of intermediate filaments on cellular forces is unclear. Using a combination of theoretical modeling and experiments, we show that vimentin intermediate filaments tune cell stress by assisting in both actomyosin-based force transmission and reinforcement of microtubule networks under compression. We show that the competition between these two opposing effects of vimentin is regulated by the microenvironment stiffness. These results reconcile seemingly contradictory results in the literature and provide a unified description of vimentin’s effects on the transmission of cell contractile forces to the extracellular matrix.more » « less
-
Coordination between actin and microtubules is important for numerous cellular processes in diverse eukaryotes. In plants, tip-growing cells require actin for cell expansion and microtubules for orientation of cell expansion, but how the two cytoskeletons are linked is an open question. In tip-growing cells of the moss Physcomitrella patens , we show that an actin cluster near the cell apex dictates the direction of rapid cell expansion. Formation of this structure depends on the convergence of microtubules near the cell tip. We discovered that microtubule convergence requires class VIII myosin function, and actin is necessary for myosin VIII–mediated focusing of microtubules. The loss of myosin VIII function affects both networks, indicating functional connections among the three cytoskeletal components. Our data suggest that microtubules direct localization of formins, actin nucleation factors, that generate actin filaments further focusing microtubules, thereby establishing a positive feedback loop ensuring that actin polymerization and cell expansion occur at a defined site resulting in persistent polarized growth.more » « less
An official website of the United States government

