Summary Plasmodesmata (PD) allow direct communication across the cellulosic plant cell wall, facilitating the intercellular movement of metabolites and signaling molecules within the symplast. InArabidopsis thalianaembryos with reduced levels of the chloroplast RNA helicase ISE2, intercellular trafficking and the number of branched PD were increased. We therefore investigated the relationship between alteredISE2expression and intercellular trafficking.Gene expression analyses in Arabidopsis tissues whereISE2expression was increased or decreased identified genes associated with the metabolism of glucosinolates (GLSs) as highly affected.Concomitant with changes in the expression of GLS‐related genes, plants with abnormalISE2expression contained altered GLS metabolic profiles compared with wild‐type (WT) counterparts. Indeed, changes in the expression of GLS‐associated genes led to altered intercellular trafficking in Arabidopsis leaves. Exogenous application of GLSs but not their breakdown products also resulted in altered intercellular trafficking.These changes in trafficking may be mediated by callose levels at PD as exogenous GLS treatment was sufficient to modulate plasmodesmal callose in WT plants. Furthermore, auxin metabolism was perturbed in plants with increased indole‐type GLS levels. These findings suggest that GLSs, which are themselves transported between cells via PD, can act on PD to regulate plasmodesmal trafficking capacity.
more »
« less
PLASMODESMATA-LOCATED PROTEIN 6 regulates plasmodesmal function in Arabidopsis vasculature
Abstract Plasmodesmata connect adjoining plant cells, allowing molecules to move between the connected cells for communication and sharing resources. It has been well established that the plant polysaccharide callose is deposited at plasmodesmata, regulating their aperture and function. Among proteins involved in maintaining callose homeostasis, PLASMODESMATA-LOCATED PROTEINSs (PDLPs) promote callose deposition at plasmodesmata. This study explored the function of PDLP5 and PDLP6 in different cell types. We discovered that PDLP5 and PDLP6 are expressed in nonoverlapping cell types in Arabidopsis (Arabidopsis thaliana). The overexpression of PDLP5 and PDLP6 results in the overaccumulation of plasmodesmal callose at different cell interfaces, indicating that PDLP5 and PDLP6 are active in different cell types. We also observed 2 distinct patterns of starch accumulation in mature leaves of PDLP5 and PDLP6 overexpressors. An enzyme-catalyzed proximity labeling approach was used to identify putative functional partners of the PDLPs. We identified SUCROSE SYNTHASE 6 (SUS6) as a functional partner of PDLP6 in the vasculature. We further demonstrated that PDLP6 physically and genetically interacts with SUS6. In addition, CALLOSE SYNTHASE 7 (CALS7) physically interacts with SUS6 and PDLP6. Genetic interaction studies showed that CALS7 is required for PDLP6 function. We propose that PDLP6 functions with SUS6 and CALS7 in the vasculature to regulate plasmodesmal function.
more »
« less
- Award ID(s):
- 2339067
- PAR ID:
- 10568956
- Publisher / Repository:
- Oxford Academic
- Date Published:
- Journal Name:
- The Plant Cell
- Volume:
- 36
- Issue:
- 9
- ISSN:
- 1040-4651
- Page Range / eLocation ID:
- 3543 to 3561
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Numerous cell surface receptors and receptor-like proteins (RLPs) undergo activation or deactivation via a transmembrane domain (TMD). A subset of plant RLPs distinctively localizes to the plasma membrane-lined pores called plasmodesmata. Those RLPs include theArabidopsis thalianaPlasmodesmata-located protein (PDLP) 5, which is well known for its vital function regulating plasmodesmal gating and molecular movement between cells. In this study, we report that the TMD, although not a determining factor for the plasmodesmal targeting, serves essential roles for the PDLP5 function. In addition to its role for membrane anchoring, the TMD mediates PDLP5 self-interaction and carries an evolutionarily conserved motif that is essential for PDLP5 to regulate cell-to-cell movement. Computational modeling-based analyses suggest that PDLP TMDs have high propensities to dimerize. We discuss how a specific mode(s) of TMD dimerization might serve as a common mechanism for PDLP5 and other PDLP members to regulate cell-to-cell movement.more » « less
-
Abstract Effective cellular signaling relies on precise spatial localization and dynamic interactions among proteins in specific subcellular compartments or niches, such as cell-to-cell contact sites and junctions. In plants, endogenous and pathogenic proteins gained the ability to target plasmodesmata, membrane-lined cytoplasmic connections, through evolution to regulate or exploit cellular signaling across cell wall boundaries. For example, the receptor-like membrane protein PLASMODESMATA-LOCATED PROTEIN 5 (PDLP5), a potent regulator of plasmodesmal permeability, generates feed-forward or feed-back signals important for plant immunity and root development. However, the molecular features that determine the plasmodesmal association of PDLP5 or other proteins remain largely unknown, and no protein motifs have been identified as plasmodesmal targeting signals. Here, we developed an approach combining custom-built machine-learning algorithms and targeted mutagenesis to examine PDLP5 in Arabidopsis thaliana and Nicotiana benthamiana. We report that PDLP5 and its closely related proteins carry unconventional targeting signals consisting of short stretches of amino acids. PDLP5 contains 2 divergent, tandemly arranged signals, either of which is sufficient for localization and biological function in regulating viral movement through plasmodesmata. Notably, plasmodesmal targeting signals exhibit little sequence conservation but are located similarly proximal to the membrane. These features appear to be a common theme in plasmodesmal targeting.more » « less
-
Abstract Cell-to-cell movement is an important step for initiation and spreading of virus infection in plants. This process occurs through the intercellular connections, termed plasmodesmata (PD), and is usually mediated by one or more virus-encoded movement proteins (MP) which interact with multiple cellular factors, among them protein kinases that usually have negative effects on MP function and virus movement. In this study, we report physical and functional interaction between MP ofTobacco mosaic virus(TMV), the paradigm of PD-moving proteins, and a receptor-like kinase BAM1 from Arabidopsis and its homolog fromNicotiana benthamiana. The interacting proteins accumulated in the PD regions, colocalizing with a PD marker. Reversed genetics experiments, using BAM1 gain-of-function and loss-of-function plants, indicated that BAM1 is required for efficient spread and accumulation the virus during initial stages of infection of both plant species by TMV. Furthermore, BAM1 was also required for the efficient cell-to-cell movement of TMV MP, suggesting that BAM1 interacts with TMV MP to support early movement of the virus. Interestingly, this role of BAM1 in viral movement did not require its protein kinase activity. Thus, we propose that association of BAM1 with TMV MP at PD facilitates the MP transport through PD, which, in turn, enhances the spread of the viral infection.more » « less
-
null (Ed.)Cytokinesis in land plants involves the formation of a cell plate that develops into the new cell wall. Callose, a β-1,3 glucan accumulates at later stages of cell plate development presumably to stabilize this delicate membrane network during expansion. Cytokinetic callose is considered specific to multicellular plant species, as it has not been detected in unicellular algae. Here we present callose at the cytokinesis junction of the unicellular charophyte, P. margaritaceum. Callose deposition at the division plane of P. margaritaceum showed distinct, spatiotemporal patterns likely representing distinct roles of this polymer in cytokinesis. Pharmacological inhibition by Endosidin 7 resulted in cytokinesis defects, consistent with the essential role for this polymer in P. margaritaceum cell division. Cell wall deposition at the isthmus zone was also affected by the absence of callose, demonstrating the dynamic nature of new wall assembly in P. margaritaceum. The identification of candidate callose synthase genes provides molecular evidence for callose biosynthesis in P. margaritaceum. The evolutionary implications of cytokinetic callose in this unicellular Zygnematopycean alga is discussed in the context of the conquest of land by plants.more » « less
An official website of the United States government

