Abstract Transparent microelectrode arrays have proven useful in neural sensing, offering a clear interface for monitoring brain activity without compromising high spatial and temporal resolution. The current landscape of transparent electrode technology faces challenges in developing durable, highly transparent electrodes while maintaining low interface impedance and prioritizing scalable processing and fabrication methods. To address these limitations, we introduce artifact‐resistant transparent MXene microelectrode arrays optimized for high spatiotemporal resolution recording of neural activity. With 60% transmittance at 550 nm, these arrays enable simultaneous imaging and electrophysiology for multimodal neural mapping. Electrochemical characterization shows low impedance of 563 ± 99 kΩ at 1 kHz and a charge storage capacity of 58 mC cm⁻² without chemical doping. In vivo experiments in rodent models demonstrate the transparent arrays' functionality and performance. In a rodent model of chemically‐induced epileptiform activity, we tracked ictal wavefronts via calcium imaging while simultaneously recording seizure onset. In the rat barrel cortex, we recorded multi‐unit activity across cortical depths, showing the feasibility of recording high‐frequency electrophysiological activity. The transparency and optical absorption properties of Ti₃C₂Tx MXene microelectrodes enable high‐quality recordings and simultaneous light‐based stimulation and imaging without contamination from light‐induced artifacts.
more »
« less
This content will become publicly available on November 14, 2025
Pathological microcircuits initiate epileptiform events in patient hippocampal slices
Abstract How seizures begin at the level of microscopic neural circuits remains unknown. High-density CMOS microelectrode arrays provide a new avenue for investigating neuronal network activity, with unprecedented spatial and temporal resolution. We use high-density CMOS-based microelectrode arrays to probe the network activity of human hippocampal brain slices from six patients with mesial temporal lobe epilepsy in the presence of hyperactivity promoting media. Two slices from the dentate gyrus exhibited epileptiform activity in the presence of low magnesium media with kainic acid. Both slices displayed an electrophysiological phenotype consistent with a reciprocally connected circuit, suggesting a recurrent feedback loop is a key driver of epileptiform onset. Larger prospective studies are needed, but these findings have the potential to elucidate the network signals underlying the initiation of seizure behavior.
more »
« less
- Award ID(s):
- 2134955
- PAR ID:
- 10569011
- Publisher / Repository:
- bioRxiv
- Date Published:
- Format(s):
- Medium: X
- Institution:
- bioRxiv
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Cortical propagating waves have recently attracted significant attention by the neuroscience community. These travelling waves have been suggested to coordinate different brain areas and play roles in assisting neural plasticity and learning. However, it is extremely challenging to record them with very fine spatial scales over large areas to investigate their effect on neural dynamics or network connectivity changes. In this work, we employ high-density porous graphene microelectrode arrays fabricated using laser pyrolysis on flexible substrates to study the functional network connectivity during cortical propagating waves. The low-impedance porous graphene arrays are used to record cortical potentials during theta oscillations and drug-induced seizuresin vivo. Spatiotemporal analysis on the neural recordings reveal that theta oscillations and epileptiform activities have distinct characteristics in terms of both synchronization and resulting propagating wave patterns. To investigate the network connectivity during the propagating waves, we perform network analysis. The results show that the propagating waves are consistent with the functional connectivity changes in the neural circuits, suggesting that the underlying network states are reflected by the cortical potential propagation patterns.more » « less
-
In the study of the brain, large and high-density microelectrode arrays have been widely used to study the behavior of neurotransmission. CMOS technology has facilitated these devices by enabling the integration of high-performance amplifiers directly on-chip. Usually, these large arrays measure only the voltage spikes resulting from action potentials traveling along firing neuronal cells. However, at synapses, communication between neurons occurs by the release of neurotransmitters, which cannot be measured on typical CMOS electrophysiology devices. Development of electrochemical amplifiers has resulted in the measurement of neurotransmitter exocytosis down to the level of a single vesicle. To effectively monitor the complete picture of neurotransmission, measurement of both action potentials and neurotransmitter activity is needed. Current efforts have not resulted in a device that is capable of the simultaneous measurement of action potential and neurotransmitter release at the same spatiotemporal resolution needed for a comprehensive study of neurotransmission. In this paper, we present a true dual-mode CMOS device that fully integrates 256-ch electrophysiology amplifiers and 256-ch electrochemical amplifiers, along with an on-chip 512 electrode microelectrode array capable of simultaneous measurement from all 512 channels.more » « less
-
SUMMARY Electrophysiology offers a high-resolution method for real-time measurement of neural activity. Longitudinal recordings from high-density microelectrode arrays (HD-MEAs) can be of considerable size for local storage and of substantial complexity for extracting neural features and network dynamics. Analysis is often demanding due to the need for multiple software tools with different runtime dependencies. To address these challenges, we developed an open-source cloud-based pipeline to store, analyze, and visualize neuronal electrophysiology recordings from HD-MEAs. This pipeline is dependency agnostic by utilizing cloud storage, cloud computing resources, and an Internet of Things messaging protocol. We containerized the services and algorithms to serve as scalable and flexible building blocks within the pipeline. In this paper, we applied this pipeline on two types of cultures, cortical organoids andex vivobrain slice recordings to show that this pipeline simplifies the data analysis process and facilitates understanding neuronal activity.more » « less
-
Abstract One-third of epilepsy patients suffer from medication-resistant seizures. While surgery to remove epileptogenic tissue helps some patients, 30–70% of patients continue to experience seizures following resection. Surgical outcomes may be improved with more accurate localization of epileptogenic tissue. We have previously developed novel thin-film, subdural electrode arrays with hundreds of microelectrodes over a 100–1000 mm2 area to enable high-resolution mapping of neural activity. Here, we used these high-density arrays to study microscale properties of human epileptiform activity. We performed intraoperative micro-electrocorticographic recordings in nine patients with epilepsy. In addition, we recorded from four patients with movement disorders undergoing deep brain stimulator implantation as non-epileptic controls. A board-certified epileptologist identified microseizures, which resembled electrographic seizures normally observed with clinical macroelectrodes. Recordings in epileptic patients had a significantly higher microseizure rate (2.01 events/min) than recordings in non-epileptic subjects (0.01 events/min; permutation test, P = 0.0068). Using spatial averaging to simulate recordings from larger electrode contacts, we found that the number of detected microseizures decreased rapidly with increasing contact diameter and decreasing contact density. In cases in which microseizures were spatially distributed across multiple channels, the approximate onset region was identified. Our results suggest that micro-electrocorticographic electrode arrays with a high density of contacts and large coverage are essential for capturing microseizures in epilepsy patients and may be beneficial for localizing epileptogenic tissue to plan surgery or target brain stimulation.more » « less