skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on June 17, 2025

Title: Infrared Laser Stark Spectroscopy of Methyl Fluoride in 4 He Nanodroplets
Abstract We measured the rotationally resolved infrared spectra of helium solvated methyl fluoride at 3 μm and 10 μm, wherein lies C−H and C−F stretching bands, respectively. The linewidths (FWHM) were found to increase with increasing vibrational energy and range from 0.002 cm−1in thev3band (C−F stretch) at ~1047 cm−1, to 0.65 cm−1in thev4band (asymmetric C−H stretch) at ~2997 cm−1. In between these two bands we observed the lower and upper components of the Fermi triad bands (ν1/2ν2/2ν5) at ~2859 and ~2961 cm−1. We carried out Stark spectroscopy on the lower band on account of its narrower linewidths (0.04 vs. 0.14 cm−1, respectively). The objective of performing Stark spectroscopy was to see if there is any evidence for a rotational linewidth dependence on the external field strength, due to a reduced difference in between methyl fluorides rotational energy gap and the roton‐gap of superfluid helium. We did not find any evidence for such an effect, which we largely attribute to the rotational energy gap not increasing significantly enough by the external field. We point to another molecule (formaldehyde) whose energy levels are predicted to show a more promising response to application of an external field.  more » « less
Award ID(s):
2418212
PAR ID:
10569037
Author(s) / Creator(s):
;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
ChemPhysChem
Volume:
25
Issue:
12
ISSN:
1439-4235
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context.The methyl cation (CH3+) has recently been discovered in the interstellar medium through the detection of 7 μm (1400 cm−1) features toward the d203-506 protoplanetary disk by the JWST. Line-by-line spectroscopic assignments of these features, however, were unsuccessful due to complex intramolecular perturbations preventing a determination of the excitation and abundance of the species in that source. Aims.Comprehensive rovibrational assignments guided by theoretical and experimental laboratory techniques provide insight into the excitation mechanisms and chemistry of CH3+in d203-506. Methods.The rovibrational structure of CH3+was studied theoretically by a combination of coupled-cluster electronic structure theory and (quasi-)variational nuclear motion calculations. Two experimental techniques were used to confirm the rovibrational structure of CH3+:(1) infrared leak-out spectroscopy of the methyl cation, and (2) rotationally resolved photoelectron spectroscopy of the methyl radical (CH3). In (1), CH3+ions, produced by the electron impact dissociative ionization of methane, were injected into a 22-pole ion trap where they were probed by the pulses of infrared radiation from the FELIX free electron laser. In (2), neutral CH3, produced by CH3NO2pyrolysis in a molecular beam, was probed by pulsed-field ionization zero-kinetic-energy photoelectron spectroscopy. Results.The quantum chemical calculations performed in this study have enabled a comprehensive spectroscopic assignment of thev2+andv4+bands of CH3+detected by the JWST. The resulting spectroscopic constants and derived EinsteinAcoefficients fully reproduce both the infrared and photoelectron spectra and permit the rotational temperature of CH3+(T= 660 ± 80 K) in d203-506 to be derived. A beam-averaged column density of CH3+in this protoplanetary disk is also estimated. 
    more » « less
  2. Abstract A new interstellar molecule, FeC (X3Δi), has been identified in the circumstellar envelope of the carbon-rich asymptotic giant branch star IRC+10216. FeC is the second iron-bearing species conclusively observed in the interstellar medium, in addition to FeCN, also found in IRC+10216. TheJ= 4 → 3, 5 → 4, and 6 → 5 rotational transitions of this free radical near 160, 201, and 241 GHz, respectively, were detected in the lowest spin–orbit ladder, Ω = 3, using the Submillimeter Telescope of the Arizona Radio Observatory (ARO) for the 1 mm lines and the ARO 12 m at 2 mm. Because the ground state of FeC is inverted, these transitions are the lowest energy lines. The detected features exhibit slight U shapes with LSR velocities nearVLSR≈ −26 km s−1and linewidths of ΔV1/2≈ 30 km s−1, line parameters characteristic of IRC+10216. Radiative transfer modeling of FeC suggests that the molecule has a shell distribution with peak radius near 300R*(∼6″) extending out to ∼500R*(∼10″) and a fractional abundance, relative to H2, off∼ 6 × 10−11. The previous FeCN spectra were also modeled, yielding an abundance off∼ 8 × 10−11in a larger shell situated near 800R*. These distributions suggest that FeC may be the precursor species for FeCN. Unlike cyanides and carbon-chain molecules, diatomic carbides with a metallic element are rare in IRC+10216, with FeC being the first such detection. 
    more » « less
  3. We study the 3.4 − 4.4 μm fundamental rovibrational band of H3+, a key tracer of the ionization of the molecular interstellar medium (ISM), in a sample of 12 local (d < 400 Mpc) (ultra)luminous infrared galaxies ((U)LIRGs) observed with JWST/NIRSpec. TheP,Q, andRbranches of the band are detected in 13 out of 20 analyzed regions within these (U)LIRGs, which increases the number of extragalactic H3+detections by a factor of 6. For the first time in the ISM, the H3+band is observed in emission; we detect this emission in three regions. In the remaining ten regions, the band is seen in absorption. The absorptions are produced toward the 3.4 − 4.4 μm hot dust continuum rather than toward the stellar continuum, indicating that they likely originate in clouds associated with the dust continuum source. The H3+band is undetected in Seyfert-like (U)LIRGs where the mildly obscured X-ray radiation from the active galactic nuclei might limit the abundance of this molecule. For the detections, the H3+abundances,N(H3+)/NH = (0.5 − 5.5)×10−7, imply relatively high ionization rates,ζH2, of between 3 × 10−16and > 4 × 10−15s−1, which are likely associated with high-energy cosmic rays. In half of the targets, the absorptions are blueshifted by 50–180 km s−1, which is lower than the molecular outflow velocities measured using other tracers such as OH 119 μm or rotational CO lines. This suggests that H3+traces gas close to the outflow-launching sites before it has been fully accelerated. We used nonlocal thermodynamic equilibrium models to investigate the physical conditions of these clouds. In seven out of ten objects, the H3+excitation is consistent with inelastic collisions with H2in warm translucent molecular clouds (Tkin ∼ 250–500 K andn(H2) ∼102 − 3cm−3). In three objects, dominant infrared pumping excitation is required to explain the absorptions from the (3,0) and (2,1) levels of H3+detected for the first time in the ISM. 
    more » « less
  4. Abstract The rotational barrier about the CN carbamate bond ofN‐(4‐hydroxybutyl)‐N‐(2,2,2‐trifluoroethyl)tert‐butyl carbamate1was determined by variable temperature (VT)13C and19F NMR spectroscopy. The −CH2CF3 appendage reports on rotational isomerism and allows for the observation of separate signals for the E‐ and Z‐ensembles at low temperature. The activation barrier for E/Z‐isomerization was quantified using Eyring‐Polanyi theory which requires the measurements of the maximum difference in Larmor frequency Δνmax and the convergence temperature Tc. Both Δνmax and Tc were interpolated by analyzing sigmoidal functions fitted to data describing signal separation and the quality of the superposition of the E‐ and Z‐signals, respectively. Methods for generating the quality‐of‐fit parameters for Lorentzian line shape analysis are discussed. Our best experimental value for the rotational barrier ΔGc(1)=15.65±0.13 kcal/mol is compared to results of a higher level ab initio study of the modelN‐ethyl‐N‐(2,2,2‐trifluoroethyl) methyl carbamate. 
    more » « less
  5. This paper presents an extensive parameter study of a non-intrusive and non-seeded laser diagnostic method for measuring one dimensional (1D) rotational temperature of molecular nitrogen (N2) at 165 - 450 K. Compared to previous efforts using molecular oxygen, here resonantly ionized and photoelectron induced fluorescence of molecular nitrogen for thermometry (N2RIPT) was demonstrated. The RIPT signal is generated by directly probing various rotational levels within the rovibrational absorption band of N2, corresponding to the 3-photon transition of N2(X1Σg+,v=0→b1Πu,v=6) near 285 nm, without involving collisional effects of molecular oxygen and nitrogen. The photoionized N2produces strong first negative band of N2+(B2Σu+−X2Σg+) near 390 nm, 420 nm, and 425 nm. Boltzmann analyses of various discrete fluorescence emission lines yield rotational temperatures of molecular nitrogen. By empirically choosing multiple rotational levels within the absorption band, non-scanning thermometry can be accurately achieved for molecular nitrogen. It is demonstrated that the N2RIPT technique can measure 1D temperature profile up to ∼5 cm in length within a pure N2environment. Multiple wavelengths are thoroughly analyzed and listed that are accurate for RIPT for various temperature ranges. 
    more » « less