skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 12 until 2:00 AM ET on Friday, June 13 due to maintenance. We apologize for the inconvenience.


Title: Low-frequency noise in ZrS3 van der Waals semiconductor nanoribbons
We report the results of the investigation of low-frequency electronic noise in ZrS3 van der Waals semiconductor nanoribbons. The test structures were of the back-gated field-effect-transistor type with a normally off n-channel and an on-to-off ratio of up to four orders of magnitude. The current–voltage transfer characteristics revealed significant hysteresis owing to the presence of deep levels. The noise in ZrS3 nanoribbons had spectral density SI ∼ 1/fγ (f is the frequency) with γ = 1.3–1.4 within the whole range of the drain and gate bias voltages. We used light illumination to establish that the noise is due to generation–recombination, owing to the presence of deep levels, and determined the energies of the defects that act as the carrier trapping centers in ZrS3 nanoribbons.  more » « less
Award ID(s):
1921958
PAR ID:
10569041
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Applied Physics Letters
Volume:
122
Issue:
9
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The synthesis of functional graphene nanostructures on Ge(001) provides an attractive route toward integrating graphene-based electronic devices onto complementary metal oxide semiconductor-compatible platforms. In this study, we leverage the phenomenon of the anisotropic growth of graphene nanoribbons from rationally placed graphene nanoseeds and their rotational self-alignment during chemical vapor deposition to synthesize mesoscale graphene nanomeshes over areas spanning several hundred square micrometers. Lithographically patterned nanoseeds are defined on a Ge(001) surface at pitches ranging from 50 to 100 nm, which serve as starting sites for subsequent nanoribbon growth. Rotational self-alignment of the nanoseeds followed by anisotropic growth kinetics causes the resulting nanoribbons to be oriented along each of the equivalent, orthogonal Ge⟨110⟩ directions with equal probability. As the nanoribbons grow, they fuse, creating a continuous nanomesh. In contrast to nanomesh synthesis via top-down approaches, this technique yields nanomeshes with atomically faceted edges and covalently bonded junctions, which are important for maximizing charge transport properties. Additionally, we simulate the electrical characteristics of nanomeshes synthesized from different initial nanoseed-sizes, size-polydispersities, pitches, and device channel lengths to identify a parameter-space for acceptable on/off ratios and on-conductance in semiconductor electronics. The simulations show that decreasing seed diameter and pitch are critical to increasing nanomesh on/off ratio and on-conductance, respectively. With further refinements in lithography, nanomeshes obtained via seeded synthesis and anisotropic growth are likely to have superior electronic properties with tremendous potential in a multitude of applications, such as radio frequency communications, sensing, thin-film electronics, and plasmonics. 
    more » « less
  2. Abstract Molybdenum disulfide (MoS2) is a multifunctional material that can be used for various applications. In the single‐crystalline form, MoS2shows superior electronic properties. It is also an exceptionally useful nanomaterial in its polycrystalline form with applications in catalysis, energy storage, water treatment, and gas sensing. Here, the scalable fabrication of longitudinal MoS2nanostructures, i.e., nanoribbons, and their oxide hybrids with tunable dimensions in a rational and well‐reproducible fashion, is reported. The nanoribbons, obtained at different reaction stages, that is, MoO3, MoS2/MoO2hybrid, and MoS2, are fully characterized. The growth method presented herein has a high yield and is particularly robust. The MoS2nanoribbons can readily be removed from its substrate and dispersed in solution. It is shown that functionalized MoS2nanoribbons can be manipulated in solution and assembled in controlled patterns and directly on microelectrodes with UV‐click‐chemistry. Owing to the high chemical purity and polycrystalline nature, the MoS2nanostructures demonstrate rapid optoelectronic response to wavelengths from 450 to 750 nm, and successfully remove mercury contaminants from water. The scalable fabrication and manipulation followed by light‐directed assembly of MoS2nanoribbons, and their unique properties, will be inspiring for device fabrication and applications of the transition metal dichalcogenides. 
    more » « less
  3. Abstract The ongoing reduction in transistor sizes drives advancements in information technology. However, as transistors shrink to the nanometer scale, surface and edge states begin to constrain their performance. 2D semiconductors like transition metal dichalcogenides (TMDs) have dangling‐bond‐free surfaces, hence achieving minimal surface states. Nonetheless, edge state disorder still limits the performance of width‐scaled 2D transistors. This work demonstrates a facile edge passivation method to enhance the electrical properties of monolayer WSe2nanoribbons, by combining scanning transmission electron microscopy, optical spectroscopy, and field‐effect transistor (FET) transport measurements. Monolayer WSe2nanoribbons are passivated with amorphous WOxSeyat the edges, which is achieved using nanolithography and a controlled remote O2plasma process. The same nanoribbons, with and without edge passivation are sequentially fabricated and measured. The passivated‐edge nanoribbon FETs exhibit 10 ± 6 times higher field‐effect mobility than the open‐edge nanoribbon FETs, which are characterized with dangling bonds at the edges. WOxSeyedge passivation minimizes edge disorder and enhances the material quality of WSe2nanoribbons. Owing to its simplicity and effectiveness, oxidation‐based edge passivation could become a turnkey manufacturing solution for TMD nanoribbons in beyond‐silicon electronics and optoelectronics. 
    more » « less
  4. Astronomical source deblending is the process of separating the contribution of individual stars or galaxies (sources) to an image comprised of multiple, possibly overlapping sources. Astronomical sources display a wide range of sizes and brightnesses and may show substantial overlap in images. Astronomical imaging data can further challenge off-the-shelf computer vision algorithms owing to its high dynamic range, low signal-to-noise ratio, and unconventional image format. These challenges make source deblending an open area of astronomical research, and in this work, we introduce a new approach called Partial-Attribution Instance Segmentation that enables source detection and deblending in a manner tractable for deep learning models. We provide a novel neural network implementation as a demonstration of the method. 
    more » « less
  5. Chemical vapor deposition of CH 4 on Ge(001) can enable anisotropic growth of narrow, semiconducting graphene nanoribbons with predominately smooth armchair edges and high-performance charge transport properties. However, such nanoribbons are not aligned in one direction but instead grow perpendicularly, which is not optimal for integration into high-performance electronics. Here, it is demonstrated that vicinal Ge(001) substrates can be used to synthesize armchair nanoribbons, of which ∼90% are aligned within ±1.5° perpendicular to the miscut. When the growth rate is slow, graphene crystals evolve as nanoribbons. However, as the growth rate increases, the uphill and downhill crystal edges evolve asymmetrically. This asymmetry is consistent with stronger binding between the downhill edge and the Ge surface, for example due to different edge termination as shown by density functional theory calculations. By tailoring growth rate and time, nanoribbons with sub-10 nm widths that exhibit excellent charge transport characteristics, including simultaneous high on-state conductance of 8.0 μS and a high on/off conductance ratio of 570 in field-effect transistors, are achieved. Large-area alignment of semiconducting ribbons with promising charge transport properties is an important step towards understanding the anisotropic nanoribbon growth and integrating these materials into scalable, future semiconductor technologies. 
    more » « less