skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stress landscape of folding brain serves as a map for axonal pathfinding
Abstract Understanding the mechanics linking cortical folding and brain connectivity is crucial for both healthy and abnormal brain development. Despite the importance of this relationship, existing models fail to explain how growing axon bundles navigate the stress field within a folding brain or how this bidirectional and dynamic interaction shapes the resulting surface morphologies and connectivity patterns. Here, we propose the concept of “axon reorientation” and formulate a mechanical model to uncover the dynamic multiscale mechanics of the linkages between cortical folding and connectivity development. Simulations incorporating axon bundle reorientation and stress-induced growth reveal potential mechanical mechanisms that lead to higher axon bundle density in gyri (ridges) compared to sulci (valleys). In particular, the connectivity patterning resulting from cortical folding exhibits a strong dependence on the growth rate and mechanical properties of the navigating axon bundles. Model predictions are supported by in vivo diffusion tensor imaging of the human brain.  more » « less
Award ID(s):
2123061
PAR ID:
10569220
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
16
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Understanding the processes of axonal growth and pathfinding during cortical folding in the brain is crucial to unravel the mechanisms underlying brain disorders that disturb connectivity throughout human brain development. However, this topic remains incompletely understood, highlighting the need for further investigation. Here, we propose and evaluate a diffusion based-mechanistic model to understand how axons grow and navigate in the folding brain. To do so, a bilayer growth model simulating the brain was devised involving a thin gray matter overlying a thick white matter. Innovatively, the stochastic model of axonal growth was linked with the stress and deformation fields of the folding bilayer system. The results showed that the modulus ratio of the gray matter to the white matter and the axonal growth rate are two potentially critical parameters that significantly influence axon pathfinding in the folding brain. The model demonstrated robust predictability in identifying axonal termination points and offered a potential mechanism explaining why axons settle more in gyri (ridges) than sulci (valleys) of the brain. Importantly, the results explain how alterations in the mechanical properties of the folding system can impact the underlying connectivity patterning. This mechanistic insight not only enhances our understanding of brain connectivity development during the fetal stage but also sheds light on brain disorders characterized by linked abnormalities in cortical folds and disruptions in connectivity. 
    more » « less
  2. Abstract The past decade has experienced renewed interest in the physical processes that fold the developing cerebral cortex. Biomechanical models and experiments suggest that growth of the cortex, outpacing growth of underlying subcortical tissue (prospective white matter), is sufficient to induce folding. However, current models do not explain the well-established links between white matter organization and fold morphology, nor do they consider subcortical remodeling that occurs during the period of folding. Here we propose a framework by which cortical folding may induce subcortical fiber growth and organization. Simulations incorporating stress-induced fiber elongation indicate that subcortical stresses resulting from folding are sufficient to induce stereotyped fiber organization beneath gyri and sulci. Model predictions are supported by high-resolution ex vivo diffusion tensor imaging of the developing rhesus macaque brain. Together, results provide support for the theory of cortical growth-induced folding and indicate that mechanical feedback plays a significant role in brain connectivity. 
    more » « less
  3. Abstract The important mechanical parameters and their hierarchy in the growth and folding of the human brain have not been thoroughly understood. In this study, we developed a multiscale mechanical model to investigate how the interplay between initial geometrical undulations, differential tangential growth in the cortical plate, and axonal connectivity form and regulate the folding patterns of the human brain in a hierarchical order. To do so, different growth scenarios with bilayer spherical models that features initial undulations on the cortex and uniform or heterogeneous distribution of axonal fibers in the white matter were developed, statistically analyzed, and validated by the imaging observations. The results showed that the differential tangential growth is the inducer of cortical folding, and in a hierarchal order, high-amplitude initial undulations on the surface and axonal fibers in the substrate regulate the folding patterns and determine the location of gyri and sulci. The locations with dense axonal fibers after folding settle in gyri rather than sulci. The statistical results also indicated that there is a strong correlation between the location of positive (outward) and negative (inward) initial undulations and the locations of gyri and sulci after folding, respectively. In addition, the locations of 3-hinge gyral folds are strongly correlated with the initial positive undulations and locations of dense axonal fibers. As another finding, it was revealed that there is a correlation between the density of axonal fibers and local gyrification index, which has been observed in imaging studies but not yet fundamentally explained. This study is the first step in understanding the linkage between abnormal gyrification (surface morphology) and disruption in connectivity that has been observed in some brain disorders such as Autism Spectrum Disorder. Moreover, the findings of the study directly contribute to the concept of the regularity and variability of folding patterns in individual human brains. 
    more » « less
  4. Abstract The human brain development experiences a complex evolving cortical folding from a smooth surface to a convoluted ensemble of folds. Computational modeling of brain development has played an essential role in better understanding the process of cortical folding, but still leaves many questions to be answered. A major challenge faced by computational models is how to create massive brain developmental simulations with affordable computational sources to complement neuroimaging data and provide reliable predictions for brain folding. In this study, we leveraged the power of machine learning in data augmentation and prediction to develop a machine-learning-based finite element surrogate model to expedite brain computational simulations, predict brain folding morphology, and explore the underlying folding mechanism. To do so, massive finite element method (FEM) mechanical models were run to simulate brain development using the predefined brain patch growth models with adjustable surface curvature. Then, a GAN-based machine learning model was trained and validated with these produced computational data to predict brain folding morphology given a predefined initial configuration. The results indicate that the machine learning models can predict the complex morphology of folding patterns, including 3-hinge gyral folds. The close agreement between the folding patterns observed in FEM results and those predicted by machine learning models validate the feasibility of the proposed approach, offering a promising avenue to predict the brain development with given fetal brain configurations. 
    more » « less
  5. The structural and mechanical properties of actin bundles are essential to eukaryotic cells, aiding in cell motility and mechanical support of the plasma membrane. Bundle formation occurs in crowded intracellular environments composed of various ions and macromolecules. Although the roles of cations and macromolecular crowding in the mechanics and organization of actin bundles have been independently established, how changing both intracellular environmental conditions influence bundle mechanics at the nanoscale has yet to be established. Here we investigate how electrostatics and depletion interactions modulate the relative Young’s modulus and height of actin bundles using atomic force microscopy. Our results demonstrate that cation- and depletion-induced bundles display an overall reduction of relative Young’s modulus depending on either cation or crowding concentrations. Furthermore, we directly measure changes to cation- and depletion-induced bundle height, indicating that bundles experience alterations to filament packing supporting the reduction to relative Young’s modulus. Taken together, our work suggests that electrostatic and depletion interactions may act counteractively, impacting actin bundle nanomechanics and organization. 
    more » « less