Expanded CAG/CTG repeats are sites of DNA damage, leading to changes in repeat length. To determine how ssDNA gap filling affects repeat instability, we inserted (CAG)70 or (CTG)70 repeats into a single-strand annealing (SSA) assay system such that resection and filling in the ssDNA gap would occur across the repeat tract. After resection, when the CTG sequence was the single-stranded template for fill-in synthesis, repeat contractions were elevated and the ssDNA created a fragile site that led to large deletions involving flanking homologous sequences. In contrast, resection was inhibited when CTG was on the resected strand, resulting in repeat expansions. Deleting Rad9, the ortholog of 53BP1, rescued repeat instability and lost viability by increasing resection and fill-in speed. Deletion of Rad51 increased CTG contractions and decreased survival, implicating Rad51 in protecting ssDNA during gap filling. Taken together, DNA sequence within a single-stranded gap determines repair kinetics, fragility, and repeat instability.
more »
« less
Recurrent DNA nicks drive massive expansions of (GAA) n repeats
Over 50 hereditary degenerative disorders are caused by expansions of short tandem DNA repeats (STRs). (GAA)nrepeat expansions are responsible for Friedreich’s ataxia as well as late-onset cerebellar ataxias (LOCAs). Thus, the mechanisms of (GAA)nrepeat expansions attract broad scientific attention. To investigate the role of DNA nicks in this process, we utilized a CRISPR-Cas9 nickase system to introduce targeted nicks adjacent to the (GAA)nrepeat tract. We found that DNA nicks 5′ of the (GAA)100run led to a dramatic increase in both the rate and scale of its expansion in dividing cells. Strikingly, they also promoted large-scale expansions of carrier- and large normal-size (GAA)nrepeats, recreating, in a model system, the expansion events that occur in human pedigrees. DNA nicks 3′ of the (GAA)100repeat led to a smaller but significant increase in the expansion rate as well. Our genetic analysis implies that in dividing cells, conversion of nicks into double-strand breaks (DSBs) during DNA replication followed by DSB or fork repair leads to repeat expansions. Finally, we showed that 5′ GAA-strand nicks increase expansion frequency in nondividing yeast cells, albeit to a lesser extent than in dividing cells.
more »
« less
- Award ID(s):
- 2153071
- PAR ID:
- 10569253
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 121
- Issue:
- 49
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract CANVAS is a recently characterized repeat expansion disease, most commonly caused by homozygous expansions of an intronic (A2G3)n repeat in the RFC1 gene. There are a multitude of repeat motifs found in the human population at this locus, some of which are pathogenic and others benign. In this study, we conducted structure-functional analyses of the pathogenic (A2G3)n and nonpathogenic (A4G)n repeats. We found that the pathogenic, but not the nonpathogenic, repeat presents a potent, orientation-dependent impediment to DNA polymerization in vitro. The pattern of the polymerization blockage is consistent with triplex or quadruplex formation in the presence of magnesium or potassium ions, respectively. Chemical probing of both repeats in vitro reveals triplex H-DNA formation by only the pathogenic repeat. Consistently, bioinformatic analysis of S1-END-seq data from human cell lines shows preferential H-DNA formation genome-wide by (A2G3)n motifs over (A4G)n motifs. Finally, the pathogenic, but not the nonpathogenic, repeat stalls replication fork progression in yeast and human cells. We hypothesize that the CANVAS-causing (A2G3)n repeat represents a challenge to genome stability by folding into alternative DNA structures that stall DNA replication.more » « less
-
Rhind, N (Ed.)Abstract Myotonic dystrophy type 2 (DM2) is a genetic disease caused by expanded CCTG DNA repeats in the first intron of CNBP. The number of CCTG repeats in DM2 patients ranges from 75 to 11,000, yet little is known about the molecular mechanisms responsible for repeat expansions or contractions. We developed an experimental system in Saccharomyces cerevisiae that enables the selection of large-scale contractions of (CCTG)100 within the intron of a reporter gene and subsequent genetic analysis. Contractions exceeded 80 repeat units, causing the final repetitive tract to be well below the threshold for disease. We found that Rad51 and Rad52 are involved in these massive contractions, indicating a mechanism that uses homologous recombination. Srs2 helicase was shown previously to stabilize CTG, CAG, and CGG repeats. Loss of Srs2 did not significantly affect CCTG contraction rates in unperturbed conditions. In contrast, loss of the RecQ helicase Sgs1 resulted in a 6-fold decrease in contraction rate with specific evidence that helicase activity is required for large-scale contractions. Using a genetic assay to evaluate chromosome arm loss, we determined that CCTG and reverse complementary CAGG repeats elevate the rate of chromosomal fragility compared to a short-track control. Overall, our results demonstrate that the genetic control of CCTG repeat contractions is notably distinct among disease-causing microsatellite repeat sequences.more » « less
-
INTRODUCTION To faithfully distribute genetic material to daughter cells during cell division, spindle fibers must couple to DNA by means of a structure called the kinetochore, which assembles at each chromosome’s centromere. Human centromeres are located within large arrays of tandemly repeated DNA sequences known as alpha satellite (αSat), which often span millions of base pairs on each chromosome. Arrays of αSat are frequently surrounded by other types of tandem satellite repeats, which have poorly understood functions, along with nonrepetitive sequences, including transcribed genes. Previous genome sequencing efforts have been unable to generate complete assemblies of satellite-rich regions because of their scale and repetitive nature, limiting the ability to study their organization, variation, and function. RATIONALE Pericentromeric and centromeric (peri/centromeric) satellite DNA sequences have remained almost entirely missing from the assembled human reference genome for the past 20 years. Using a complete, telomere-to-telomere (T2T) assembly of a human genome, we developed and deployed tailored computational approaches to reveal the organization and evolutionary patterns of these satellite arrays at both large and small length scales. We also performed experiments to map precisely which αSat repeats interact with kinetochore proteins. Last, we compared peri/centromeric regions among multiple individuals to understand how these sequences vary across diverse genetic backgrounds. RESULTS Satellite repeats constitute 6.2% of the T2T-CHM13 genome assembly, with αSat representing the single largest component (2.8% of the genome). By studying the sequence relationships of αSat repeats in detail across each centromere, we found genome-wide evidence that human centromeres evolve through “layered expansions.” Specifically, distinct repetitive variants arise within each centromeric region and expand through mechanisms that resemble successive tandem duplications, whereas older flanking sequences shrink and diverge over time. We also revealed that the most recently expanded repeats within each αSat array are more likely to interact with the inner kinetochore protein Centromere Protein A (CENP-A), which coincides with regions of reduced CpG methylation. This suggests a strong relationship between local satellite repeat expansion, kinetochore positioning, and DNA hypomethylation. Furthermore, we uncovered large and unexpected structural rearrangements that affect multiple satellite repeat types, including active centromeric αSat arrays. Last, by comparing sequence information from nearly 1600 individuals’ X chromosomes, we observed that individuals with recent African ancestry possess the greatest genetic diversity in the region surrounding the centromere, which sometimes contains a predominantly African αSat sequence variant. CONCLUSION The genetic and epigenetic properties of centromeres are closely interwoven through evolution. These findings raise important questions about the specific molecular mechanisms responsible for the relationship between inner kinetochore proteins, DNA hypomethylation, and layered αSat expansions. Even more questions remain about the function and evolution of non-αSat repeats. To begin answering these questions, we have produced a comprehensive encyclopedia of peri/centromeric sequences in a human genome, and we demonstrated how these regions can be studied with modern genomic tools. Our work also illuminates the rich genetic variation hidden within these formerly missing regions of the genome, which may contribute to health and disease. This unexplored variation underlines the need for more T2T human genome assemblies from genetically diverse individuals. Gapless assemblies illuminate centromere evolution. ( Top ) The organization of peri/centromeric satellite repeats. ( Bottom left ) A schematic portraying (i) evidence for centromere evolution through layered expansions and (ii) the localization of inner-kinetochore proteins in the youngest, most recently expanded repeats, which coincide with a region of DNA hypomethylation. ( Bottom right ) An illustration of the global distribution of chrX centromere haplotypes, showing increased diversity in populations with recent African ancestry.more » « less
-
Abstract H-DNA is an intramolecular DNA triplex formed by homopurine-homopyrimidine mirror repeats. Since its discovery, the field has advanced from characterizing the structure in vitro to discovering its existence and role in vivo. H-DNA interacts with cellular machinery in unique ways, stalling DNA and RNA polymerases and causing genome. The foundational S1 nuclease and chemical probing technologies originally used to show H-DNA formation have been updated and combined with genome-wide sequencing methods for large-scale mapping of secondary structures. There is evidence for triplex H-DNA’s role in polycystic kidney disease, cancer, and numerous repeat expansion diseases. In polycystic kidney disease (PKD), an H-DNA forming repeat region within the PKD1 gene stalls DNA replication and induces fragility. H-DNA- forming repeats in various genes have a role in cancer; the most well-studied examples involve H-DNA-mediated fragility causing translocations in multiple lymphomas. Lastly, H-DNA-forming repeats have been implicated in four repeat expansion diseases: Friedreich's ataxia (FRDA), GAA-FGF14-related ataxia, X-linked Dystonia Parkinsonism (XDP), and cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS). In this review, we summarize H-DNA’s discovery and characterization, evidence for its existence and function in vivo, and the field's current knowledge on its role in physiology and pathology.more » « less
An official website of the United States government
