skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Intra- and interspecific diversity in a tropical plant clade alter herbivory and ecosystem resilience
Declines in biodiversity generated by anthropogenic stressors at both species and population levels can alter emergent processes instrumental to ecosystem function and resilience. As such, understanding the role of biodiversity in ecosystem function and its response to climate perturbation is increasingly important, especially in tropical systems where responses to changes in biodiversity are less predictable and more challenging to assess experimentally. Using large-scale transplant experiments conducted at five neotropical sites, we documented the impacts of changes in intraspecific and interspecific plant richness in the genusPiperon insect herbivory, insect richness, and ecosystem resilience to perturbations in water availability. We found that reductions of both intraspecific and interspecificPiperdiversity had measurable and site-specific effects on herbivory, herbivorous insect richness, and plant mortality. The responses of these ecosystem-relevant processes to reduced intraspecificPiperrichness were often similar in magnitude to the effects of reduced interspecific richness. Increased water availability reduced herbivory by 4.2% overall, and the response of herbivorous insect richness and herbivory to water availability were altered by both intra- and interspecific richness in a site-dependent manner. Our results underscore the role of intraspecific and interspecific richness as foundations of ecosystem function and the importance of community and location-specific contingencies in controlling function in complex tropical systems.  more » « less
Award ID(s):
2133818
PAR ID:
10569311
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
eLife
Date Published:
Journal Name:
eLife
Volume:
12
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Insect herbivory can be an important selective pressure and contribute substantially to local plant richness. As herbivory is the result of numerous ecological and evolutionary processes, such as complex insect population dynamics and evolution of plant antiherbivore defenses, it has been difficult to predict variation in herbivory across meaningful spatial scales. In the present work, we characterize patterns of herbivory on plants in a species‐rich and abundant tropical genus (Piper) across forests spanning 44° of latitude in the Neotropics. We modeled the effects of geography, climate, resource availability, andPiperspecies richness on the median, dispersion, and skew of generalist and specialist herbivory. By examining these multiple components of the distribution of herbivory, we were able to determine factors that increase biologically meaningful herbivory at the upper ends of the distribution (indicated by skew and dispersion). We observed a roughly twofold increase in median herbivory in humid relative to seasonal forests, which aligns with the hypothesis that precipitation seasonality plays a critical role in shaping interaction diversity within tropical ecosystems. Site level variables such as latitude, seasonality, and maximumPiperrichness explained the positive skew in herbivory at the local scale (plot level) better for assemblages ofPipercongeners than for a single species. Predictors that varied between local communities, such as resource availability and diversity, best explained the distribution of herbivory within sites, dampening broad patterns across latitude and climate and demonstrating why generalizations about gradients in herbivory have been elusive. The estimated population means, dispersion, and skew of herbivory responded differently to abiotic and biotic factors, illustrating the need for careful studies to explore distributions of herbivory and their effects on forest diversity. 
    more » « less
  2. Abstract Species richness in tropical forests is correlated with other dimensions of diversity, including the diversity of plant–herbivore interactions and the phytochemical diversity that influences those interactions. Understanding the complexity of plant chemistry and the importance of phytochemical diversity for plant–insect interactions and overall forest richness has been enhanced significantly by the application of metabolomics to natural systems. The present work used proton nuclear magnetic resonance spectroscopy (1H‐NMR) profiling of crude leaf extracts to study phytochemical similarity and diversity amongPiperplants growing naturally in the Atlantic Rainforest of Brazil. Spectral profile similarity and chemical diversity were quantified to examine the relationship between metrics of phytochemical diversity, specialist and generalist herbivory, and understory plant richness. Herbivory increased with understory species richness, while generalist herbivory increased and specialist herbivory decreased with the diversity ofPiperleaf material available. Specialist herbivory increased when conspecific host plants were more spectroscopically dissimilar. Spectral similarity was lower among individuals of common species, and they were also more spectrally diverse, indicating phytochemical diversity is beneficial to plants. Canopy openness and soil nutrients also influenced chemistry and herbivory. The complex relationships uncovered in this study add information to our growing understanding of the importance of phytochemical diversity for plant–insect interactions and tropical plant species richness. 
    more » « less
  3. Abstract Plasticity in plant traits, including secondary metabolites, is critical to plant survival and competitiveness under stressful conditions. The ability of a plant to respond effectively to combined stressors can be impacted by crosstalk in biochemical pathways, resource availability and evolutionary history, but such responses remain underexplored. In particular, we know little about intraspecific variation in response to combined stressors or whether such variation is associated with the stress history of a given population.Here, we investigated the consequences of combined water and herbivory stress for plant traits, including relative growth rate, leaf morphology and various measures of phytochemistry, using a common garden ofAsclepias fascicularismilkweeds. To examine how plant trait means and plasticities depend on the history of environmental stress, seeds for the experiment were collected from across a gradient of aridity in the Great Basin, United States. We then conducted a factorial experiment crossing water limitation with herbivory.Plants responded to water limitation alone by increasing the evenness of UV‐absorbent secondary metabolites and to herbivory alone by increasing the richness of metabolites. However, plants that experienced combined water and herbivory stress exhibited similar phytochemical diversity to well‐watered control plants. This lack of plasticity in phytochemical diversity in plants experiencing combined stressors was associated with a reduction in relative growth rates.Leaf chemistry means and plasticities exhibited clinal variation corresponding to seed source water deficits. The total concentration of UV‐absorbent metabolites decreased with increasing water availability among seed sources, driven by higher concentrations of flavonol glycosides, which are hypothesized to act as antioxidants, among plants from drier sites. Plants sourced from drier sites exhibited higher plasticity in flavonol glycoside concentrations in response to water limitation, which increased phytochemical evenness, but simultaneous herbivory dampened plant responses to water limitation irrespective of seed source.Synthesis. These results suggest that climatic history can affect intraspecific phytochemical plasticity, which may confer tolerance to water limitation, but that co‐occurring herbivory disrupts such patterns. Global change is increasing the frequency and intensity of stress combinations, such that understanding intraspecific responses to combined stressors is critical for predicting the persistence of plant populations. 
    more » « less
  4. Abstract The plastic responses of plants to abiotic and biotic environmental factors have generally been addressed separately; thus we have a poor understanding of how these factors interact. For example, little is known about the effects of plant–plant interactions on the plasticity of plants in response to water availability. Furthermore, few studies have compared the effects of intra‐ and interspecific interactions on plastic responses to abiotic factors. To explore the effects of intraspecific and interspecific plant–plant interactions on plant responses to water availability, we grewLeucanthemumvulgareandPotentillarectawith a conspecific or the other species, and grew pairs of each species as controls in pots with the roots, but not shoots, physically separated. We subjected these competitive arrangements to mesic and dry conditions, and then measured shoot mass, root mass, total mass and root : shoot ratio and calculated plasticity in these traits. The total biomass of both species was highly suppressed by both intra‐ and interspecific interactions in mesic soil conditions. However, in drier soil, intraspecific interactions for both species and the effect ofP. rectaonL. vulgarewere facilitative. For plasticity in response to water supply, when adjusted for total biomass, drought increased shoot mass, and decreased root mass and root : shoot ratios for both species in intraspecific interactions. When grown alone, there were no plastic responses in any trait except total mass, for either species. Our results suggested that plants interacting with other plants often show improved tolerance for drought than those grown alone, perhaps because of neighbor‐induced shifts in plasticity in biomass allocation. Facilitative effects might also be promoted by plasticity to drought in root : shoot ratios. 
    more » « less
  5. Assessing within-species variation in response to drought is crucial for predicting species’ responses to climate change and informing restoration and conservation efforts, yet experimental data are lacking for the vast majority of tropical tree species. We assessed intraspecific variation in response to water availability across a strong rainfall gradient for 16 tropical tree species using reciprocal transplant and common garden field experiments, along with measurements of gene flow and key functional traits linked to drought resistance. Although drought resistance varies widely among species in these forests, we found little evidence for within-species variation in drought resistance. For the majority of functional traits measured, we detected no significant intraspecific variation. The few traits that did vary significantly between drier and wetter origins of the same species all showed relationships opposite to expectations based on drought stress. Furthermore, seedlings of the same species originating from drier and wetter sites performed equally well under drought conditions in the common garden experiment and at the driest transplant site. However, contrary to expectation, wetter-origin seedlings survived better than drier-origin seedlings under wetter conditions in both the reciprocal transplant and common garden experiment, potentially due to lower insect herbivory. Our study provides the most comprehensive picture to date of intraspecific variation in tropical tree species’ responses to water availability. Our findings suggest that while drought plays an important role in shaping species composition across moist tropical forests, its influence on within-species variation is limited. 
    more » « less